Cubic Dirac operator for $U_{q}\left(\mathfrak{s l}_{2}\right)$

Andrey Krutov

Institute of Mathematics, Czech Academy of Sciences

Joint with Pavle Pandžić

arXiv:2209.09591 [math.RT]

Representation Theory XVII
October 4, 2022
Dubrovnik

The noncommutative Weil algebra of \mathfrak{g}

$$
\mathcal{W}(\mathfrak{g}):=U(\mathfrak{g}) \otimes \mathrm{Cl}(\mathfrak{g})
$$

Let e_{a} denotes the basis of \mathfrak{g} and f_{a} be the corresponding dual basis. The elements $u_{a}=e_{a} \otimes 1$ and $x_{a}=1 \otimes f_{a}$ are generators of $\mathcal{W}(\mathfrak{g})$. Set

$$
D:=\sum_{a} u_{a} x_{a}+\gamma, \quad \gamma \in \mathrm{Cl}^{(3)}(\mathfrak{g})
$$

The element D may be viewed as a cubic Dirac operator The square D^{2} is given by

$$
D^{2}=\mathrm{Cas}_{\mathfrak{g}}+\frac{1}{24} \operatorname{tr}\left(\mathrm{Cas}_{\mathfrak{g}}\right)
$$

where $\operatorname{Cas}_{\mathfrak{g}}=\sum_{a} e_{a} f_{a}$ is the Casimir element of $U(\mathfrak{g})$ and $\operatorname{tr}\left(\mathrm{Cas}_{\mathfrak{g}}\right)$ is its trace in the adjoint representation of \mathfrak{g}.

- Dirac cohomology and Vogan's conjecture (proved by Huang and Pandžić)
- Cartan's model and equivariant cohomologies (Alekseev and Meinrenken)
- Multiples of representation and an algebraic version of Borel-Weil theorem (Kostant).
- Previous works of Kulish, Durđević, D’Andrea, Dabrowski, Krahmer, Tucker-Simmons, Matassa, Ó Buachalla, Somberg, Das, ... (geometric setting).
- Gauge theory on noncommutative principal bundles (Ćaćić, Mesland)
- Previous works of Pandžić and Somberg (algebraic setting).

Hopf Algebras

An associative algebra over \mathbb{K} is a 3-tuple (A, m, η)

$$
m: A \otimes A \rightarrow A, \quad \eta: \mathbb{C} \rightarrow A
$$

A coassociative coalgebra over \mathbb{K} is a 3-tuple (A, Δ, ε)

$$
\Delta: A \rightarrow A \otimes A, \quad \varepsilon: A \rightarrow \mathbb{C}
$$

A Hopf algebra over \mathbb{K} is a 6-tuple $(A, m, \eta, \Delta, \varepsilon, S), S: A \rightarrow A$

$$
m \circ(S \otimes \mathrm{id}) \circ \Delta=\eta \circ \varepsilon=m \circ(\mathrm{id} \otimes S) \circ \Delta
$$

Example

Let G be a finite group, $A=\mathbb{K} G$. For $g \in G$, we have

$$
\Delta g=g \otimes g, \quad \varepsilon(g)=1, \quad S(g)=g^{-1}
$$

The tensor algebra $T(V)$ of V. For $v \in V$,

$$
\Delta v=v \otimes 1+1 \otimes v, \quad \varepsilon(v)=0, \quad S(v)=-v
$$

The universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g}. For $x \in \mathfrak{g}$,

$$
\Delta x=x \otimes 1+1 \otimes x, \quad \varepsilon(x)=0, \quad S(x)=-x .
$$

If V and W are \mathfrak{g}-modules then $\Delta x \in \mathfrak{g} \otimes \mathfrak{g}$ defines the action of x on $V \otimes W$.
The counit $\varepsilon: U(\mathfrak{g}) \rightarrow \mathbb{C}$ define the trivial representation.
Sweedler notation

$$
\Delta: H \rightarrow H \otimes H, \quad \Delta h=\sum_{i} x_{i} \otimes y_{i}=h_{(1)} \otimes h_{(2)}
$$

Drinfel'd-Jimbo Quantum Groups: $\mathfrak{s l}_{2}$ case

Fix $q \in \mathbb{C}$ such that q is not a root of unity. The quantised universal enveloping algebra of $\mathfrak{s l}_{2}$ is the algebra with four generators E, F, K, K^{-1} satisfying the defining relations

$$
\begin{gathered}
K K^{-1}=K^{-1} K=1, \quad K E K^{-1}=q^{2} E, \quad K F K^{-1}=q^{-2} F \\
{[E, F]=E F-F E=\frac{K-K^{-1}}{q-q^{-1}}}
\end{gathered}
$$

The Hopf algebra structure is given by

$$
\begin{gathered}
\Delta(E)=E \otimes K+1 \otimes E, \Delta(F)=F \otimes 1+K^{-1} \otimes F, \Delta(K)=K \otimes K \\
S\left(K^{ \pm 1}\right)=K^{\mp 1}, \quad S(E)=-E K^{-1}, \quad S(F)=-K F \\
\varepsilon\left(K^{ \pm 1}\right)=1, \quad \varepsilon(E)=\varepsilon(F)=0
\end{gathered}
$$

Drinfeld-Jimbo Quantum Groups: $\mathfrak{s l}_{2}$ case, $q \rightarrow 1$

- $U\left(\mathfrak{s l}_{2}\right)$ is generated by E, F, H.
- Formally set $q=e^{\hbar}, K=e^{\hbar}$ in $U_{q}\left(\mathfrak{s l}_{2}\right)$ and $\hbar \rightarrow 0$.
- Let $\widetilde{U}_{q}\left(\mathfrak{s l}_{2}\right)$ be an algebra generated by E, F, K, K^{-1} and G satisfying

$$
\begin{gathered}
{[G, E]=E\left(q K+q^{-1} K^{-1}\right), \quad[G, F]=-\left(q K+q^{-1} K^{-1}\right) F,} \\
{[E, F]=G, \quad\left(q-q^{-1}\right) G=K-K^{-1}}
\end{gathered}
$$

- If $q^{2} \neq 1$ then $\widetilde{U}_{q}\left(\mathfrak{s l}_{2}\right)$ and $U_{q}\left(\mathfrak{s l}_{2}\right)$ are isomorphic

$$
E \mapsto E, \quad F \mapsto F, \quad G \mapsto\left(q-q^{-1}\right)^{-1}\left(K-K^{-1}\right)
$$

$U\left(\mathfrak{s l}_{2}\right)$ and $\widetilde{U}_{1}\left(\mathfrak{s l}_{2}\right)$ are closely related. Indeed

$$
\widetilde{U}_{1}\left(\mathfrak{s l}_{2}\right) \simeq U\left(\mathfrak{s l}_{2}\right) \otimes \mathbb{C}_{2}, \quad U\left(\mathfrak{s l}_{2}\right) \simeq \widetilde{U}_{1}\left(\mathfrak{s l}_{2}\right) /\langle K-1\rangle
$$

For $q=1$ we have that K belongs to the centre of $\widetilde{U}_{1}\left(\mathfrak{s l}_{2}\right)$ and the first isomorphism is given by

$$
E \mapsto E \mathcal{X}, \quad F \mapsto F, \quad G \mapsto H \mathcal{X},
$$

where \mathcal{X} is the generator of $\mathbb{C Z}_{2}$ such that $\mathcal{X}^{2}=1$. Remark. Twice more representations due to $\mathbb{C Z}_{2}$.

$U_{q}\left(\mathfrak{s l}_{2}\right)$: Representation Theory

Let α be a simple root of $\mathfrak{s l}_{2}$ and λ be an integral weight of $\mathfrak{s l}_{2}$.

- the Verma module M_{λ} over $U_{q}\left(\mathfrak{s l}_{2}\right)$ generated by v_{λ} with relations

$$
E v_{\lambda}=0 \quad K v_{\lambda}=q^{\left(\lambda, \alpha^{\vee}\right)} v_{\lambda}
$$

where α^{\vee} is the corresponding simple coroot.

- If $\mathfrak{s l}_{2}$ is a dominant weight of \mathfrak{g} then M_{λ} has a maximal proper submodule I_{λ} generated by $F^{\left(\lambda, \alpha^{\vee}\right)+1} v_{\lambda}$ and

$$
V_{\lambda}:=M_{\lambda} / I_{\lambda}
$$

is a finite-dimensional irreducible representation of $U_{q}\left(\mathfrak{s l}_{2}\right)$.

- Such representations are called type-1 representations.

The left adjoin action of $U_{q}\left(\mathfrak{s l}_{2}\right)$ on itself is defined by

$$
\operatorname{ad}_{a} b=a_{(1)} b S\left(a_{(2)}\right) \quad \text { for } a, b \in U_{q}\left(\mathfrak{s l}_{2}\right)
$$

In particular, for $b \in U_{q}\left(\mathfrak{s l}_{2}\right)$,

$$
\begin{aligned}
\operatorname{ad}_{E} b & =E b K^{-1}-b E K^{-1}, & \operatorname{ad}_{F} b & =F b-K^{-1} b K F \\
\operatorname{ad}_{K} b & =K b K^{-1}, & \operatorname{ad}_{K^{-1}} b & =K^{-1} b K
\end{aligned}
$$

Denote

$$
\begin{aligned}
v_{2} & =E \\
v_{0} & =q^{-2} E F-F E=\left(q-q^{-1}\right)^{-1}\left(K-K^{-1}\right)-q^{-1}\left(q-q^{-1}\right) E F, \\
v_{-2} & =K F
\end{aligned}
$$

Let $\pi \in \mathcal{P}$ be the fundamental weight of $\mathfrak{s l}_{2}$. The elements v_{2}, v_{0}, v_{-2} spans $U_{q}\left(\mathfrak{s l}_{2}\right)$-module $V_{2 \pi}$ with respect to the left adjoint action.

$$
\begin{array}{rlrl}
\operatorname{ad}_{E} v_{2} & =0, & \operatorname{ad}_{K} v_{2} & =q^{2} v_{2}, \\
\operatorname{ad}_{E} v_{0} & =-\left(q+q^{-1}\right) v_{2}, & \operatorname{ad}_{K} v_{0} & =v_{0}, \\
\operatorname{ad}_{E} v_{-2} & =v_{0}, & \operatorname{ad}_{F} v_{2} & =-v_{0} \\
\operatorname{ad}_{K} v_{-2} & =\left(q+q^{-1}\right) v_{-2} \\
& =v_{-2}, & \operatorname{ad}_{F} v_{-2} & =0
\end{array}
$$

Let C be a monoidal category with the collection of associativity constrains

$$
\alpha_{A, B, C}:(A \otimes B) \otimes C \rightarrow A \otimes(B \otimes C) \quad A, B, C \in \operatorname{Obj}(\mathrm{C})
$$

A braiding on a monoidal category C is a natural isomophism σ between functors $-\otimes$ - and $-\otimes^{\mathrm{op}}$ - such that the hexagonal diagrams commute,

A braided monoidal category is a pair consisting of a monoidal category and a braiding.

If C is a strict braided monoidal category with braiding σ then for all $A, B, C \in \mathrm{Obj}(\mathrm{C})$ the braiding satisfies the following Yang-Baxter equation

Symmetric monoidal categories

A symmetric monoidal category is a braided monoidal category such that $\sigma^{2}=\mathrm{id}$.

Example
$\operatorname{Vect}_{\mathbb{K}}, \sigma(v \otimes w)=w \otimes v$.
Note that

$$
\begin{array}{cc}
S^{2} V=\{v \in \mathcal{T}(V) \mid \sigma(v)=v\}, & \Lambda^{2} V=\{v \in \mathcal{T}(V) \mid \sigma(v)=-v\} \\
\Lambda V=\mathcal{T}(V) /\left\langle S^{2} V\right\rangle, \quad S V=\mathcal{T}(V) /\left\langle\Lambda^{2} V\right\rangle
\end{array}
$$

Example
$\operatorname{SVect}_{\mathbb{K}}, \sigma(v \otimes w)=(-1)^{p(w) p(v)} w \otimes v$.

- $\operatorname{Rep}_{1} U_{q}(\mathfrak{g})$ is a braided monoidal category
- the universal R-matrix $R \in U_{q}(\mathfrak{g}) \widehat{\otimes} U_{q}(\mathfrak{g})$

$$
\begin{gather*}
\rho_{V}: U_{q}(\mathfrak{g}) \rightarrow \operatorname{End}(V), \quad \rho_{W}: U_{q}(\mathfrak{g}) \rightarrow \operatorname{End}(W) \\
\sigma_{R, V \otimes W}:=\tau \circ\left(\rho_{V} \otimes \rho_{W}\right)(R), \tag{1}
\end{gather*}
$$

Eigenvalues: $\pm q^{(\ldots)}$ on $V \otimes V$

- the normalised braiding

$$
\tilde{\sigma}_{R, V \otimes W}:=\sqrt{\sigma_{R, W \otimes V}^{-1} \sigma_{R, V \otimes W}^{-1}} \sigma_{R, V \otimes W}
$$

Eigenvalues: ± 1 on $V \otimes V$

- $\tilde{\sigma}_{R, V \otimes W}$ does not satisfies the Yang-Baxter equation.
- For any $V \in \operatorname{Rep}_{1}\left(U_{q}(\mathfrak{g})\right)$, let us denote

$$
S_{q}^{2} V:=\left\{x \in V \otimes V \mid \tilde{\sigma}_{R}(x)=x\right\}, \quad \Lambda_{q}^{2} V:=\left\{x \in V \otimes V \mid \tilde{\sigma}_{R}(x)=-x\right\} .
$$

- the $B Z$ quantum exterior algebra $\Lambda_{q}(V)$ of V to be

$$
\Lambda_{q}(V):=\mathcal{T}(V) /\left\langle S_{q}^{2} V\right\rangle
$$

For $U_{q}\left(\mathfrak{s l}_{2}\right)$,

$$
R_{0}=q^{\hbar H \otimes H / 2}, \quad R_{1}=\sum_{m=0}^{+\infty} \frac{q^{m^{2}-m}\left(q-q^{-1}\right)^{m}}{[m]_{q^{2}}!} E^{m} \otimes F^{m}
$$

where $K=q^{\hbar H}$,

$$
[m]_{q^{2}}=\frac{q^{2 m}-1}{q^{2}-1}, \quad[m]_{q^{2}}!=[m]_{q^{2}}[m-1]_{q^{2}} \ldots[1]_{q^{2}}
$$

The corresponding braiding σ_{R} on $\operatorname{Rep}_{1} U_{q}\left(\mathfrak{S L}_{2}\right)$ is given by
$\sigma_{R}:=\tau \circ R: V \otimes W \rightarrow W \otimes W, \quad R_{0}(v \otimes w)=q^{(\mathrm{wt}(v), \mathrm{wt}(w))} v \otimes w$,
where W and V are objects in $\operatorname{Rep}_{1} U_{q}\left(\mathfrak{s l}_{2}\right)$ and $v \in V, w \in W$.

For $U_{q}\left(\mathfrak{s l}_{2}\right)$, the algebra $\Lambda_{q} V_{2 \pi}$ has the classical dimension.

$$
\begin{array}{ll}
v_{2} \wedge v_{2}=0, & v_{-2} \wedge v_{-2}=0 \\
v_{0} \wedge v_{2}=-q^{-2} v_{2} \wedge v_{0}, & v_{-2} \wedge v_{0}=-q^{-2} v_{0} \wedge v_{-2} \\
v_{0} \wedge v_{0}=\frac{\left(1-q^{4}\right)}{q^{3}} v_{2} \wedge v_{-2}, & v_{-2} \wedge v_{2}=-v_{2} \wedge v_{-2}
\end{array}
$$

Let A be a Hopf algebra and V be an A-module. A bilinear form $\langle\cdot, \cdot\rangle$ on V is invariant if

$$
\left\langle a_{(1)} v, a_{(2)} w\right\rangle=\varepsilon(a)\langle v, w\rangle \quad \text { for all } a \in A, v, w \in V .
$$

The $U_{q}\left(\mathfrak{s l}_{2}\right)$-module $V_{2 \pi}$ admits a nondegenerate invariant bilinear form given by

$$
\left\langle v_{2}, v_{-2}\right\rangle=c, \quad\left\langle v_{0}, v_{0}\right\rangle=q^{-3}\left(1+q^{2}\right) c, \quad\left\langle v_{-2}, v_{2}\right\rangle=c q^{-2}
$$

where $c \in \mathbb{C}\left[q, q^{-1}\right]$.
Note that $\langle\cdot, \cdot\rangle$ is invariant with respect to σ.

Definition

Let $\mathrm{Cl}_{q}\left(V_{2 \pi}, \sigma,\langle\cdot, \cdot\rangle\right):=T\left(V_{2 \pi}\right) / I$, where the corresponding two-sided ideal I is generated by

$$
\begin{equation*}
x \otimes y+\sigma(x \otimes y)-2\langle x, y\rangle 1 \quad \text { for all } x, y \in V_{2 \pi} \tag{2}
\end{equation*}
$$

and σ is the normalized braiding for $V_{2 \pi} \otimes V_{2 \pi}$.
In what follows we refer to $\mathrm{Cl}_{q}\left(V_{2 \pi}, \sigma,\langle\cdot, \cdot\rangle\right)$ as the q-deformed Clifford algebra of $\mathfrak{s l}_{2}$ and denote it by $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$. Note that the algebra $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ is an associative algebra in the braided monoidal category of $U_{q}\left(\mathfrak{s l}_{2}\right)$-module, since the ideal (2) is invariant under the action of $U_{q}\left(\mathfrak{s l}_{2}\right)$.

The generators of the ideal (2) are
$v_{2} \otimes v_{2}$,
$v_{0} \otimes v_{2}+q^{-2} v_{2} \otimes v_{0}$,
$v_{-2} \otimes v_{2}-q^{-1} v_{0} \otimes v_{0}+q^{-4} v_{2} \otimes v_{-2}$,
$q^{2} v_{-2} \otimes v_{0}+v_{0} \otimes v_{-2}$,
$v_{-2} \otimes v_{-2}$,
$\frac{2\left(q^{2}+1\right)}{q^{3}} v_{-2} \otimes v_{2}+2 v_{0} \otimes v_{0}+\frac{2\left(q^{2}+1\right)}{q} v_{2} \otimes v_{-2}-\frac{2\left(q^{2}+1\right)\left(q^{4}+q^{2}+1\right)}{q^{5}} c 1$,
where $c \in \mathbb{C}\left[q, q^{-1}\right]$.
Note that since the ideal generated by (2) is homogeneous with respect to the standard \mathbb{Z}_{2}-grading in the tensor algebra $T\left(V_{2 \pi}\right)$, the algebra $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ is also \mathbb{Z}_{2}-graded.

Lemma

The algebra $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ is of the PBW type.

Proof.

Consider the corresponding homogeneous quadratic algebra $\Lambda_{q} V_{2 \pi}$. Since the Hilbert-Poincare series of $\Lambda_{q} V_{2 \pi}$ is the same in the classical case then $\Lambda_{q} V_{2 \pi}$ is a Koszul algebra. Hence, the algebra $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ is of the PBW type.
$v_{2} v_{2}=0$,
$v_{0} v_{2}=-q^{-2} v_{2} v_{0}$,
$v_{0} v_{0}=\frac{\left(1-q^{4}\right)}{q^{3}} v_{2} v_{-2}+\frac{q^{2}+1}{q} c 1$,

$$
\begin{aligned}
v_{-2} v_{-2} & =0 \\
v_{-2} v_{0} & =-q^{-2} v_{0} v_{-2}
\end{aligned}
$$

$$
v_{-2} v_{2}=-v_{2} v_{-2}+\frac{q^{2}+1}{q^{2}} c 1
$$

where $c \in \mathbb{C}\left[q, q^{-1}\right]$.

The first remark is that there is a non-scalar central element

$$
\gamma=v_{2} v_{0} v_{-2}+c v_{0}
$$

The square of γ is computed to be a scalar, $c^{2} t^{2}$, where

$$
t=c \sqrt{\frac{q^{2}+1}{q}}
$$

This now implies there are two orthogonal central projectors in our algebra, one proportional to $\gamma_{1}=\gamma-c t$, and the other to $\gamma_{2}=\gamma+c t$. It is now easy to check that our algebra is the direct sum of the two ideals I_{1}, I_{2} generated by γ_{1} and γ_{2}.

Let S_{1} be a two-dimensional vector space. We consider the representation of $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ on S_{1} given by

$$
\begin{gathered}
v_{2} \text { acts by }\left(\begin{array}{ll}
0 & t \\
0 & 0
\end{array}\right), \quad v_{0} \text { acts by }\left(\begin{array}{cc}
t / q^{2} & 0 \\
0 & -t
\end{array}\right), \\
v_{-2} \text { acts by }\left(\begin{array}{cc}
0 & 0 \\
t / q & 0
\end{array}\right) .
\end{gathered}
$$

It is easily computed that γ acts by the scalar -ct. Moreover, it is clear that our algebra maps onto $\operatorname{End}\left(S_{1}\right)$, so since the ideal I_{1} acts by 0 , the ideal I_{2} is isomorphic to $\operatorname{End}\left(S_{1}\right)$.

Let S_{2} be a two-dimensional vector space. We consider the representation of $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ on S_{2} given by

$$
\begin{aligned}
v_{2} \text { acts by }\left(\begin{array}{ll}
0 & t \\
0 & 0
\end{array}\right), \quad v_{0} \text { acts by }\left(\begin{array}{cc}
-t / q^{2} & 0 \\
0 & t
\end{array}\right), \\
v_{-2} \text { acts by }\left(\begin{array}{cc}
0 & 0 \\
t / q & 0
\end{array}\right) .
\end{aligned}
$$

Now γ acts by the scalar ct. Therefore, S_{1} and S_{2} are not isomorphic as $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$-modules. The algebra maps onto $\operatorname{End}\left(S_{2}\right), I_{2}$ acts by 0 , and I_{1} is isomorphic to $\operatorname{End}\left(S_{2}\right)$.

The corresponding ideals of $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ are given by

$$
\begin{aligned}
& I_{1}:=\operatorname{Span}\left(\gamma-c t, v_{2}(\gamma-c t), v_{-2}(\gamma-c t), v_{2} v_{-2}(\gamma-c t)\right), \\
& I_{2}:=\operatorname{Span}\left(\gamma+c t, v_{2}(\gamma+c t), v_{-2}(\gamma+c t), v_{2} v_{-2}(\gamma+c t)\right) .
\end{aligned}
$$

So we see that our algebra is isomorphic to $\operatorname{End}\left(S_{1}\right) \oplus \operatorname{End}\left(S_{2}\right)$. Therefore, we proved the following theorem.
Theorem
The algebra $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ is isomorphic to the classical Clifford algebra $\mathrm{Cl}\left(\mathfrak{s l}_{2}\right)$.
$\mathrm{Cl}\left(\mathfrak{s l}_{2}\right)$ is generated by e, h, and f

$$
\begin{gathered}
e^{2}=0, \quad f^{2}=0, \quad h^{2}=2 \\
e f=-f e+2, \quad e h=-h e, \quad f h=-h f
\end{gathered}
$$

$\phi: \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathrm{Cl}\left(\mathfrak{s l}_{2}\right)$
$\phi\left(v_{2}\right)=t e, \quad \phi\left(v_{0}\right)=\frac{\sqrt{2}}{2} t h\left(1-\frac{q^{2}-1}{2 q^{2}} e f\right), \quad \phi\left(v_{-2}\right)=\frac{t}{2 q} f$,

Definition

The q-deformed noncommutative Weil algebra of $\mathfrak{s l}_{2}$ is a super algebra

$$
\mathcal{W}_{q}\left(\mathfrak{s l}_{2}\right):=U_{q}\left(\mathfrak{s l}_{2}\right) \otimes \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)
$$

with the associative multiplication given by

$$
(x \otimes v) \cdot(y \otimes w)=\sum_{i} x y_{i} \otimes v_{i} w
$$

where

$$
\sigma_{R}(v \otimes y)=\sum_{i} y_{i} \otimes v_{i}
$$

and $x, y \in U_{q}\left(\mathfrak{s l}_{2}\right), v, w \in \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$.
Clearly, $\mathcal{W}_{q}\left(\mathfrak{s l}_{2}\right)$ is an associative algebra in the braided monoidal category of $U_{q}\left(\mathfrak{s l}_{2}\right)$-modules with the braiding given by the universal R-matrix.

Set

$$
\begin{aligned}
X & :=v_{2}=E, \quad Z:=v_{0}=q^{-2} E F-F E, \quad Y:=v_{-2}=K F, \\
C & :=E F+\frac{q^{-1} K+q K^{-1}}{\left(q-q^{-1}\right)^{2}}, \quad \text { (quantum Casimir) } \\
W & :=K^{-1} .
\end{aligned}
$$

Note that the elements X, Z, Y, C, and W generate $U_{q}\left(\mathfrak{s l}_{2}\right)$.
Consider the following element of $U_{q}\left(\mathfrak{s l}_{2}\right) \otimes \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$

$$
\begin{aligned}
D:= & \frac{1}{c}\left(X \otimes v_{-2}+\frac{q}{1+q^{2}} Z \otimes v_{0}+q^{-2} Y \otimes v_{2}\right) \\
& -\frac{\left(q^{2}-1\right)^{2}}{2 q\left(q^{2}+1\right) c^{2}} C \otimes \underbrace{\left(v_{2} v_{0} v_{-2}+c v_{0}\right)}_{\gamma} .
\end{aligned}
$$

Theorem

$$
D^{2}=\frac{\left(q^{2}+1\right)\left(q^{2}-1\right)^{2}}{4 q^{3} c} C^{2} \otimes 1-\frac{q\left(q^{2}+1\right)}{\left(q^{2}-1\right)^{2} c} 1 \otimes 1
$$

So D^{2} is a central element in $\mathcal{W}_{q}\left(\mathfrak{s l}_{2}\right)$.

Let

$$
C_{q}=2 F E+\frac{2 q^{3} K+2 q K^{-1}-1-q^{2}}{\left(q^{2}-1\right)^{2}}=2 C-2 \frac{q^{2}+1}{\left(q^{2}-1\right)^{2}}
$$

Note that

$$
\lim _{q \rightarrow 1} C_{q}=\mathrm{CaS}_{\mathfrak{s l}_{2}}=e f+f e+\frac{1}{2} h^{2}
$$

Then

$$
\begin{aligned}
D= & \frac{1}{c}\left(X \otimes v_{-2}+\frac{q}{1+q^{2}} Z \otimes v_{0}+q^{-2} Y \otimes v_{2}\right) \\
& -\left(\frac{\left(q^{2}-1\right)^{2}}{4 q\left(q^{2}+1\right) c^{2}} C_{q}+\frac{1}{2 q c^{2}}\right) \otimes\left(v_{2} v_{0} v_{-2}+c v_{0}\right) \\
D^{2}= & \frac{\left.\left(1+q^{2}\right)\left(q^{2}-1\right)^{2}\right)}{16 q^{3} c} C_{q}^{2} \otimes 1+\frac{\left(q^{2}+1\right)^{2}}{4 q^{3} c} C_{q} \otimes 1+\frac{q^{2}+1}{4 q c} 1 \otimes 1
\end{aligned}
$$

If $\left|\lim _{q \rightarrow 1} \frac{1}{c}\right|<\infty$, then

$$
\lim _{q \rightarrow 1} D^{2}=\left(\lim _{q \rightarrow 1} \frac{1}{c}\right)\left(\operatorname{Cas}_{\mathfrak{s l}_{2}}+\frac{1}{2}\right)
$$

Note that $\operatorname{tr}\left(\mathrm{Cas}_{\mathfrak{S l}_{2}}\right)=12$ and $D_{\mathfrak{S l}_{2}}=\mathrm{Cas}_{\mathfrak{s l}_{2}}+\frac{1}{2}$.

Let $\lambda \in \mathbb{C}$. Recall that the type I Verma $U_{q}\left(\mathfrak{s l}_{2}\right)$-module $M_{\lambda \pi}$ with the highest weight $\lambda \pi$ is defined to be an infinite-dimensional vector space

$$
M_{\lambda \pi}:=\bigoplus_{m \in \mathbb{Z} \geq 0} \mathbb{C} v_{\lambda-2 m}
$$

equipped with the action

$$
\begin{gathered}
E v_{\lambda-2 m}=[\lambda-m+1]_{q} v_{\lambda-2(m-1)}, \quad F v_{\lambda-2 m}=[m+1]_{q} v_{\lambda-2(m+1)} \\
K^{ \pm 1} v_{\lambda-2 m}=q^{ \pm(\lambda-2 m)} v_{\lambda-2 m}
\end{gathered}
$$

where

$$
[m]_{q}=\frac{q^{m}-q^{-m}}{q-q^{-1}}
$$

If $\lambda \in \mathbb{Z}_{+}$, then $M_{\lambda \pi}$ has the simple $(\lambda+1)$-dimensional sub-quotient $V_{\lambda \pi}$ which is spanned by $w_{\lambda-2 k}$ for $k=0, \ldots, \lambda$. The formulas for the $U_{q}\left(\mathfrak{s l}_{2}\right)$-action on $V_{\lambda \pi}$ stay the same assuming that $w_{-\lambda-2}=0$.

Let

$$
f_{A}: A \otimes V \rightarrow V \quad \text { and } \quad f_{B}: B \otimes W \rightarrow W
$$

be structure maps of an A-action, resp. B-action, on V, resp. W, then the structure map $f_{A \underline{\otimes} B}$ of $A \underline{\otimes} B$-action on $V \otimes W$ is given by
$f_{A \otimes B}=\left(f_{A} \otimes f_{B}\right) \circ\left(\operatorname{id}_{A} \otimes \sigma_{R} \otimes \operatorname{id}_{W}\right): A \otimes B \otimes V \otimes W \rightarrow V \otimes W$.
In what follows we use this formula to define an action of $\mathcal{W}_{q}\left(\mathfrak{s l}_{2}\right)$ on $M_{\lambda \pi} \otimes S_{i}$ and $V_{\lambda \pi} \otimes S_{i}$ for $i=1,2$.

Let S be one of two spin modules of $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$. Note that

$$
C=\frac{q}{\left(q^{2}-1\right)^{2}}\left(q^{2} K+K^{-1}\right)+F E .
$$

Therefore, the Casimir C acts on $M_{\lambda \pi}$ as

$$
\frac{q}{\left(q^{2}-1\right)^{2}}\left(q^{2+\lambda}+q^{-\lambda}\right) \mathrm{id}
$$

Thus, D^{2} acts on $M_{\lambda \pi} \otimes S$ as

$$
\frac{q^{2}+1}{4 q c}\left(q^{2+\lambda}-q^{-\lambda}\right) \mathrm{id} .
$$

Which is nonzero if $\lambda \neq-1$.
Let M be an $U_{q}\left(\mathfrak{s l}_{2}\right)$-module, then $D \in \mathcal{W}_{q}\left(\mathfrak{s l}_{2}\right)$ acts on $M \otimes S$. We define the Dirac cohomology of M to be the vector space

$$
H_{D}(M)=\operatorname{ker}(D) /(\operatorname{im}(D) \cap \operatorname{ker}(D))
$$

Lemma
Let $\lambda \in \mathbb{C} \backslash\{-1\}$ and $k \in \mathbb{Z}_{+}$, then $H_{D}\left(M_{\lambda \pi}\right)=H_{D}\left(V_{k \pi}\right)=0$.

Let $\lambda \neq-1$. The eigenvalues of D on $M_{\lambda \pi} \otimes S_{1}$ are

$$
-\frac{1}{2 c}[\lambda+1]_{q} t, \quad \frac{1}{2 c}[\lambda+1]_{q} t .
$$

For $\lambda \notin \mathbb{Z}_{\geq 0}$, eigenvectors of D corresponding to the eigenvalue
$-\frac{1}{2 c}[\lambda+1]_{q} t$ are
$\frac{q^{1-k+\lambda}\left(q^{2 k}-1\right)}{q^{2 k}-q^{2 \lambda+2}} w_{\lambda-2 k} \otimes s_{1}+w_{\lambda-2(k-1)} \otimes s_{-1} \quad$ for $k=1,2, \ldots$,
eigenvectors of D corresponding to the eigenvalue $\frac{1}{2 c}[\lambda+1]_{q} t$ are
$w_{\lambda} \otimes s_{1}, \quad q^{1-k+\lambda} w_{\lambda-2 k} \otimes s_{1}+w_{\lambda-2(k-1)} \otimes s_{-1} \quad$ for $k=1,2, \ldots$.

Let $\lambda \in \mathbb{Z}_{\geq 0}$. The eigenvalues of D on $V_{\lambda \pi} \otimes S_{1}$ are the same as for $M_{\lambda \pi} \otimes S_{1}$. The eigenvector of D on $V_{\lambda \pi} \otimes S_{1}$
corresponding to the eigenvalue $-\frac{1}{2 c}[\lambda+1]_{q} t$ are

$$
\begin{gathered}
w_{-\lambda-2} \otimes s_{1} \\
\frac{q^{1-k+\lambda}\left(q^{2 k}-1\right)}{q^{2 k}-q^{2 \lambda+2}} w_{\lambda-2 k} \otimes s_{1}+w_{\lambda-2(k-1)} \otimes s_{-1} \quad \text { for } k=1, \ldots, \lambda .
\end{gathered}
$$

The eigenvector of D on $V_{\lambda \pi} \otimes S_{1}$ corresponding to the eigenvalue $\frac{1}{2 c}[\lambda+1]_{q} t$ are
$w_{\lambda} \otimes s_{1}, \quad q^{1-k+\lambda} w_{\lambda-2 k} \otimes s_{1}+w_{\lambda-2(k-1)} \otimes s_{-1} \quad$ for $k=1, \ldots, \lambda$.

\mathfrak{g}-differential spaces and algebras

Let G be a compact Lie group and \mathfrak{g} be its Lie algebra. Let $\Lambda[\xi]$ be the Grassmann algebra with generator ξ.
$\mathrm{d}:=\partial_{\xi} \in \operatorname{Der} \Lambda[\xi]$
Set

$$
\widehat{\mathfrak{g}}:=\widehat{\mathfrak{g}}_{-1} \oplus \widehat{\mathfrak{g}}_{0} \oplus \widehat{\mathfrak{g}}_{-1}=\mathfrak{g} \otimes \Lambda[\xi] \oplus \mathbb{C d} .
$$

For $x \in \mathfrak{g}$, let $L_{x}=x \otimes 1 \in \widehat{\mathfrak{g}}_{0}, \iota_{x}=x \otimes \xi \in \widehat{\mathfrak{g}}_{-1}$.
The non-zero brackets are

$$
\left[L_{x}, L_{y}\right]=L_{[x, y]}, \quad\left[L_{x}, \iota_{y}\right]=\iota_{[x, y]}, \quad\left[\iota_{x}, \mathrm{~d}\right]=L_{x} \quad \text { for } x, y \in \mathfrak{g}
$$

A \mathfrak{g}-differential spaces is a superspace B, together with a $\widehat{\mathfrak{g}}$-modules structure $\rho: \widehat{\mathfrak{g}} \rightarrow \operatorname{End}(B)$.
A \mathfrak{g}-differential algebra is a superalgebra B, equipped with a structure of G-differential space such that $\rho(x) \in \operatorname{Der} B$ for all $x \in \widehat{\mathfrak{g}}$.

Take $B=\Lambda \mathfrak{g}^{*}$, equipped with the coadjoint action of \mathfrak{g}.

- e_{i} be a basis in \mathfrak{g} and f_{i} be the dual basis in $\mathfrak{g}^{*} \simeq \Lambda^{1} \mathfrak{g}^{*}$

$$
\left[e_{i}, e_{j}\right]=\sum_{k} c_{i, j}^{k} e_{k}
$$

- The contractions $\iota_{e_{i}}$ are defined by

$$
\iota_{e_{i}} f_{j}=\left\langle f_{j}, e_{i}\right\rangle, \quad \iota_{e_{i}}(x \wedge y)=\left(\iota_{e_{i}} x\right) \wedge y+(-1)^{\operatorname{deg} x} x \wedge \iota_{e_{i}} y
$$

- The Lie derivatives are given by

$$
L_{e_{i}}=-\sum_{k, j} c_{i, j}^{k} f_{j} \wedge \iota_{e_{k}}
$$

- The differential d is given by Koszul's formula

$$
\mathrm{d}_{\wedge}=\frac{1}{2} \sum_{a} f_{a} \wedge L_{e_{a}} .
$$

Then $\Lambda \mathfrak{g}^{*}$ is a \mathfrak{g}-differential algebra.
One can show that $H\left(\Lambda \mathfrak{g}^{*}, \mathrm{~d}\right) \cong\left(\Lambda \mathfrak{g}^{*}\right)^{G} \cong H(\mathfrak{g})$.

Suppose

- \mathfrak{g} has an nondegenerate invariant symmetric bilinear form.
- e_{a} be an orthonormal basis of \mathfrak{g},

$$
\left[e_{a}, e_{b}\right]=\sum_{k} c_{a b}^{k} e_{k}
$$

- Using the invariant bilinear form on \mathfrak{g} to pull down indices

$$
f_{a b}^{c} \longmapsto f_{a b c}
$$

Set

$$
\begin{aligned}
g_{a} & =-\frac{1}{2} \sum_{r, s} f_{\text {ars }} e_{r} e_{s} \in \mathrm{Cl}^{(2)}(\mathfrak{g}) \\
\gamma & =\frac{1}{3} \sum_{a} e_{a} g_{a}=-\frac{1}{6} \sum_{a, b, c} f_{a b c} e_{a} e_{b} e_{c} \in \mathrm{Cl}^{(3)}(\mathfrak{g})^{\mathfrak{g}}
\end{aligned}
$$

The Clifford algebra $\mathrm{Cl}(\mathfrak{g})$ with derivations

$$
\iota_{a}=\left[e_{a}, \cdot\right]_{\mathrm{Cl}}, \quad L_{a}=\left[g_{a}, \cdot\right]_{\mathrm{Cl}}, \quad \mathrm{~d}_{\mathrm{Cl}}=[\gamma, \cdot]_{\mathrm{Cl}} .
$$

The cohomology is trivial in all filtration degrees (except if \mathfrak{g} is abelian, in which case $\mathrm{d}_{\mathrm{Cl}}=0$).

Set
$[x, y]_{\sigma}:=\left(m_{\mathrm{Cl}_{q}}-(-1)^{p(x) p(y)} m_{\mathrm{Cl}_{q}} \circ \sigma\right)(x \otimes y) \quad$ for $x, y \in \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$,
where $m_{\mathrm{Cl}_{q}}$ denotes the multiplication map in $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$.

$$
\mathrm{d}_{\mathrm{Cl}}(x)=\gamma x-(-1)^{p(x)} x \gamma=[\gamma, x]_{\sigma} .
$$

For all $x \in \mathrm{Cl}(\mathfrak{g})$ set

$$
L_{v_{k}}(x)=\operatorname{ad}_{v_{k}} x \quad \text { for } k=2,0,-2
$$

Lemma
We have that $L_{v_{k}}(x)=\left[-\mathrm{d}_{\mathrm{Cl}}\left(v_{k}\right), x\right]_{\sigma}$.
For $x \in \mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ define
$\iota_{v_{2}}(x):=\left[-v_{2}, x\right]_{\sigma}, \quad \iota_{v_{0}}(x):=\left[-v_{0}, x\right]_{\sigma}, \quad \iota_{v_{0}}(x):=\left[-v_{-2}, x\right]_{\sigma}$.
Lemma
We have that $L_{v}=\left[\iota_{v}, \mathrm{~d}_{\mathrm{Cl}_{q}}\right]_{\sigma}$ for $v \in V_{2 \pi}$.

A q-deformed $\mathfrak{s l}_{2}$-differential algebras is an algebra B together with

1) an action of $U_{q}\left(\mathfrak{s l}_{2}\right)$, in particular, we can define a Lie derivative L_{x} with respect an element $x \in V_{2 \pi} \subset U_{q}\left(\mathfrak{s l}_{2}\right)$,
2) an action ι_{x} of $\Lambda_{q} V_{2 \pi}$,
3) an differential d, such that $L_{x}=\left[\iota_{x}, \mathrm{~d}\right]$ for all $x \in V_{2 \pi}$.
Theorem
The algebra $\mathrm{Cl}_{q}\left(\mathfrak{s l}_{2}\right)$ admits a structure of q-deformed $\mathfrak{s l}_{2}$-differential algebra.

Let $\Lambda(n)$ denotes the Grassmann algebra with n generators ξ_{1}, \ldots, ξ_{n}. The Grassmann algebra $\Lambda(n)$ has a natural \mathbb{Z}-grading given by $\operatorname{deg} \xi_{i}=1$. Let $\mathfrak{v e c t}(0 \mid n):=\operatorname{Der} \Lambda(n)$. Clearly, $\mathfrak{v e c t}(0 \mid n)$ is a \mathbb{Z}-graded Lie superalgebra where $\operatorname{deg} \partial_{\xi_{i}}=-1$. Let $\mathfrak{v e c t}(0 \mid n)_{-1}$ denotes the homogeneous component of degree -1 .
Any semisimple Lie superalgebra is the direct sum of the following summands

$$
\tilde{\mathfrak{s}} \otimes \Lambda(n) \notin \mathfrak{v}
$$

where \mathfrak{s} is a simple Lie superalgebra and $\mathfrak{v} \subset \mathfrak{v e c t}(0 \mid n)$ such that $\mathfrak{s} \subseteq \tilde{\mathfrak{s}} \subseteq \operatorname{Der} \mathfrak{s}$ and the projection $\mathfrak{v} \rightarrow \mathfrak{v e c t}(0 \mid n)_{-1}$ is onto.

In our case (for $\widehat{\mathfrak{g}}$) we have that $n=1, \mathfrak{v}=\operatorname{Span}_{\mathbb{C}}\left(\partial_{\xi}\right), \tilde{\mathfrak{s}}=\mathfrak{s}=\mathfrak{g}$.

$$
\mathfrak{s l}_{2} \otimes \Lambda(1) \text { "q-deforms" to } U_{q}\left(\mathfrak{s l}_{2}\right) \otimes \Lambda_{q} V_{2 \pi} \text {. }
$$

Thank you

