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The noncommutative Weil algebra of g

W(g) := U(g)⊗ Cl(g).

Let ea denotes the basis of g and fa be the corresponding dual
basis. The elements ua = ea ⊗ 1 and xa = 1⊗ fa are
generators of W(g). Set

D :=
∑
a

uaxa + γ, γ ∈ Cl(3)(g)

The element D may be viewed as a cubic Dirac operator The
square D2 is given by

D2 = Casg +
1

24
tr(Casg),

where Casg =
∑

a eafa is the Casimir element of U(g) and
tr(Casg) is its trace in the adjoint representation of g.
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• Dirac cohomology and Vogan’s conjecture (proved by Huang
and Pandžić)

• Cartan’s model and equivariant cohomologies (Alekseev and
Meinrenken)

• Multiples of representation and an algebraic version of
Borel–Weil theorem (Kostant).

• Previous works of Kulish, Durdević, D’Andrea, Dabrowski,
Krahmer, Tucker-Simmons, Matassa, Ó Buachalla, Somberg,
Das, . . . (geometric setting).

• Gauge theory on noncommutative principal bundles (Ćaćić,
Mesland)

• Previous works of Pandžić and Somberg (algebraic setting).
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Hopf Algebras
An associative algebra over K is a 3-tuple (A,m, η)

m : A⊗A → A, η : C → A.

A⊗A⊗A

m⊗id
��

id⊗m // A⊗A

m
��

A⊗A m
// A

K⊗A
η⊗id //

∼=

%%

A⊗A

m
��

A⊗K
∼=

yy

id⊗ηoo

A

A coassociative coalgebra over K is a 3-tuple (A,∆, ε)

∆: A → A⊗A, ε : A → C.

A⊗A⊗A A⊗A
∆⊗idoo

A⊗A

id⊗∆

OO

A
∆oo

∆

OO K⊗A A⊗A
ε⊗idoo id⊗ε // A⊗K

A

∼=
ee

∼=
99

∆

OO

A Hopf algebra over K is a 6-tuple (A,m, η,∆, ε, S), S : A → A

m ◦ (S ⊗ id) ◦∆ = η ◦ ε = m ◦ (id⊗S) ◦∆
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Example
Let G be a finite group, A = KG. For g ∈ G, we have

∆g = g ⊗ g, ε(g) = 1, S(g) = g−1.

The tensor algebra T (V ) of V . For v ∈ V ,

∆v = v ⊗ 1 + 1⊗ v, ε(v) = 0, S(v) = −v.

The universal enveloping algebra U(g) of g. For x ∈ g,

∆x = x⊗ 1 + 1⊗ x, ε(x) = 0, S(x) = −x.

If V and W are g-modules then ∆x ∈ g⊗ g defines the action
of x on V ⊗W .
The counit ε : U(g) → C define the trivial representation.

Sweedler notation

∆: H → H ⊗H, ∆h =
∑
i

xi ⊗ yi = h(1) ⊗ h(2)
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Drinfel’d–Jimbo Quantum Groups: sl2 case

Fix q ∈ C such that q is not a root of unity. The quantised
universal enveloping algebra of sl2 is the algebra with four
generators E,F,K,K−1 satisfying the defining relations

KK−1 = K−1K = 1, KEK−1 = q2E, KFK−1 = q−2F,

[E,F ] = EF − FE =
K −K−1

q − q−1
.

The Hopf algebra structure is given by

∆(E) = E ⊗K + 1⊗ E, ∆(F ) = F ⊗ 1 +K−1 ⊗ F, ∆(K) = K ⊗K,

S(K±1) = K∓1, S(E) = −EK−1, S(F ) = −KF,

ε(K±1) = 1, ε(E) = ε(F ) = 0.
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Drinfeld–Jimbo Quantum Groups: sl2 case, q → 1

• U(sl2) is generated by E,F,H.
• Formally set q = eℏ, K = eℏ in Uq(sl2) and ℏ → 0.
• Let Ũq(sl2) be an algebra generated by E,F,K,K−1 and G

satisfying

[G,E] = E(qK + q−1K−1), [G,F ] = −(qK + q−1K−1)F,

[E,F ] = G, (q − q−1)G = K −K−1.

• If q2 ̸= 1 then Ũq(sl2) and Uq(sl2) are isomorphic

E 7→ E, F 7→ F, G 7→ (q − q−1)−1(K −K−1)

7 / 38



Uq(sl2) and Ũq(sl2) when q2 = 1

U(sl2) and Ũ1(sl2) are closely related. Indeed

Ũ1(sl2) ≃ U(sl2)⊗ CZ2, U(sl2) ≃ Ũ1(sl2)/⟨K − 1⟩

For q = 1 we have that K belongs to the centre of Ũ1(sl2) and
the first isomorphism is given by

E 7→ EX , F 7→ F, G 7→ HX ,

where X is the generator of CZ2 such that X 2 = 1.
Remark. Twice more representations due to CZ2.

8 / 38



Uq(sl2): Representation Theory

Let α be a simple root of sl2 and λ be an integral weight of sl2.
• the Verma module Mλ over Uq(sl2) generated by vλ with
relations

Evλ = 0 Kvλ = q(λ,α
∨)vλ

where α∨ is the corresponding simple coroot.
• If sl2 is a dominant weight of g then Mλ has a maximal proper
submodule Iλ generated by F (λ,α∨)+1vλ and

Vλ := Mλ/Iλ

is a finite-dimensional irreducible representation of Uq(sl2).
• Such representations are called type-1 representations.
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The left adjoin action of Uq(sl2) on itself is defined by

ada b = a(1)bS(a(2)) for a, b ∈ Uq(sl2).

In particular, for b ∈ Uq(sl2),

adE b = EbK−1 − bEK−1, adF b = Fb−K−1bKF,

adK b = KbK−1, adK−1 b = K−1bK.

Denote

v2 = E,

v0 = q−2EF − FE = (q − q−1)−1(K −K−1)− q−1(q − q−1)EF,

v−2 = KF.

Let π ∈ P be the fundamental weight of sl2. The elements v2,
v0, v−2 spans Uq(sl2)-module V2π with respect to the left adjoint
action.

adE v2 = 0, adK v2 = q2v2, adF v2 = − v0,

adE v0 = − (q + q−1)v2, adK v0 = v0, adF v0 = (q + q−1)v−2

adE v−2 = v0, adK v−2 = q−2v−2, adF v−2 = 0.
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Let C be a monoidal category with the collection of associativity
constrains

αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C) A,B,C ∈ Obj(C).

A braiding on a monoidal category C is a natural isomophism σ
between functors −⊗− and −⊗op − such that the hexagonal
diagrams commute,

A⊗ (B ⊗ C)
σA,B⊗C // (B ⊗ C)⊗A

αB,C,A

''
(A⊗B)⊗ C

αA,B,C

77

σA,B⊗idC

''

B ⊗ (C ⊗A)

(B ⊗A)⊗ C
αB,A,C // B ⊗ (A⊗ C)

idB ⊗σA,C

77

A braided monoidal category is a pair consisting of a monoidal
category and a braiding.
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If C is a strict braided monoidal category with braiding σ then for
all A,B,C ∈ Obj(C) the braiding satisfies the following
Yang–Baxter equation

B ⊗A⊗ C
idB ⊗σA,C // B ⊗ C ⊗A

σB,C⊗idA

''
A⊗B ⊗ C

σA,B⊗idC

77

idA ⊗σB,C

''

C ⊗B ⊗A

A⊗ C ⊗B
σA,C⊗idC // C ⊗A⊗B

idC ⊗σA,B

77
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Symmetric monoidal categories

A symmetric monoidal category is a braided monoidal category
such that σ2 = id.

Example
VectK, σ(v ⊗ w) = w ⊗ v.
Note that

S2V = {v ∈ T (V ) | σ(v) = v}, Λ2V = {v ∈ T (V ) | σ(v) = −v}.

ΛV = T (V )/⟨S2V ⟩, SV = T (V )/⟨Λ2V ⟩.

Example
SVectK, σ(v ⊗ w) = (−1)p(w)p(v)w ⊗ v.
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• Rep1Uq(g) is a braided monoidal category
• the universal R-matrix R ∈ Uq(g)⊗̂Uq(g)

ρV : Uq(g) → End(V ), ρW : Uq(g) → End(W )

σR,V⊗W := τ ◦ (ρV ⊗ ρW )(R), (1)

Eigenvalues: ±q(...) on V ⊗ V
• the normalised braiding

σ̃R,V⊗W :=
√
σ−1
R,W⊗V σ

−1
R,V⊗W σR,V⊗W .

Eigenvalues: ±1 on V ⊗ V
• σ̃R,V⊗W does not satisfies the Yang–Baxter equation.
• For any V ∈ Rep1(Uq(g)), let us denote

S2
qV := {x ∈ V⊗V | σ̃R(x) = x}, Λ2

qV := {x ∈ V⊗V | σ̃R(x) = −x}.

• the BZ quantum exterior algebra Λq(V ) of V to be

Λq(V ) := T (V )/⟨S2
qV ⟩,
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For Uq(sl2),

R0 = qℏH⊗H/2, R1 =

+∞∑
m=0

qm
2−m(q − q−1)m

[m]q2 !
Em ⊗ Fm,

where K = qℏH ,

[m]q2 =
q2m − 1

q2 − 1
, [m]q2 ! = [m]q2 [m− 1]q2 . . . [1]q2 .

The corresponding braiding σR on Rep1Uq(sl2) is given by

σR := τ ◦R : V ⊗W → W ⊗W, R0(v ⊗ w) = q(wt(v),wt(w))v ⊗ w,

where W and V are objects in Rep1Uq(sl2) and v ∈ V , w ∈ W .
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For Uq(sl2), the algebra ΛqV2π has the classical dimension.

v2 ∧ v2 = 0, v−2 ∧ v−2 = 0,

v0 ∧ v2 = − q−2v2 ∧ v0, v−2 ∧ v0 = − q−2v0 ∧ v−2,

v0 ∧ v0 =
(1− q4)

q3
v2 ∧ v−2, v−2 ∧ v2 = − v2 ∧ v−2.

Let A be a Hopf algebra and V be an A-module. A bilinear
form ⟨·, ·⟩ on V is invariant if

⟨a(1)v, a(2)w⟩ = ε(a)⟨v, w⟩ for all a ∈ A, v, w ∈ V .

The Uq(sl2)-module V2π admits a nondegenerate invariant
bilinear form given by

⟨v2, v−2⟩ = c, ⟨v0, v0⟩ = q−3(1 + q2)c, ⟨v−2, v2⟩ = cq−2,

where c ∈ C[q, q−1].
Note that ⟨·, ·⟩ is invariant with respect to σ.
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Definition
Let Clq(V2π, σ, ⟨·, ·⟩) := T (V2π)/I, where the corresponding
two-sided ideal I is generated by

x⊗ y + σ(x⊗ y)− 2⟨x, y⟩1 for all x, y ∈ V2π, (2)

and σ is the normalized braiding for V2π ⊗ V2π.
In what follows we refer to Clq(V2π, σ, ⟨·, ·⟩) as the q-deformed
Clifford algebra of sl2 and denote it by Clq(sl2). Note that the
algebra Clq(sl2) is an associative algebra in the braided
monoidal category of Uq(sl2)-module, since the ideal (2) is
invariant under the action of Uq(sl2).
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The generators of the ideal (2) are

v2 ⊗ v2,

v0 ⊗ v2 + q−2v2 ⊗ v0,

v−2 ⊗ v2 − q−1v0 ⊗ v0 + q−4v2 ⊗ v−2,

q2v−2 ⊗ v0 + v0 ⊗ v−2,

v−2 ⊗ v−2,

2(q2+1)
q3

v−2 ⊗ v2 + 2v0 ⊗ v0 +
2(q2+1)

q v2 ⊗ v−2 − 2(q2+1)(q4+q2+1)
q5

c1,

where c ∈ C[q, q−1].
Note that since the ideal generated by (2) is homogeneous with
respect to the standard Z2-grading in the tensor
algebra T (V2π), the algebra Clq(sl2) is also Z2-graded.
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Lemma
The algebra Clq(sl2) is of the PBW type.

Proof.
Consider the corresponding homogeneous quadratic
algebra ΛqV2π. Since the Hilbert–Poincare series of ΛqV2π is
the same in the classical case then ΛqV2π is a Koszul algebra.
Hence, the algebra Clq(sl2) is of the PBW type.

v2v2 = 0, v−2v−2 = 0,

v0v2 = − q−2v2v0, v−2v0 = − q−2v0v−2,

v0v0 =
(1− q4)

q3
v2v−2 +

q2 + 1

q
c1, v−2v2 = − v2v−2 +

q2 + 1

q2
c1,

where c ∈ C[q, q−1].
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The first remark is that there is a non-scalar central element

γ = v2v0v−2 + cv0.

The square of γ is computed to be a scalar, c2t2, where

t = c

√
q2 + 1

q
.

This now implies there are two orthogonal central projectors in
our algebra, one proportional to γ1 = γ − ct, and the other to
γ2 = γ + ct. It is now easy to check that our algebra is the direct
sum of the two ideals I1, I2 generated by γ1 and γ2.
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Let S1 be a two-dimensional vector space. We consider the
representation of Clq(sl2) on S1 given by

v2 acts by
(
0 t
0 0

)
, v0 acts by

(
t/q2 0
0 −t

)
,

v−2 acts by
(

0 0
t/q 0

)
.

It is easily computed that γ acts by the scalar −ct. Moreover, it
is clear that our algebra maps onto End(S1), so since the ideal
I1 acts by 0, the ideal I2 is isomorphic to End(S1).
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Let S2 be a two-dimensional vector space. We consider the
representation of Clq(sl2) on S2 given by

v2 acts by
(
0 t
0 0

)
, v0 acts by

(
−t/q2 0

0 t

)
,

v−2 acts by
(

0 0
t/q 0

)
.

Now γ acts by the scalar ct. Therefore, S1 and S2 are not
isomorphic as Clq(sl2)-modules. The algebra maps onto
End(S2), I2 acts by 0, and I1 is isomorphic to End(S2).
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The corresponding ideals of Clq(sl2) are given by

I1 := Span (γ − ct, v2(γ − ct), v−2(γ − ct), v2v−2(γ − ct)) ,

I2 := Span (γ + ct, v2(γ + ct), v−2(γ + ct), v2v−2(γ + ct)) .

So we see that our algebra is isomorphic to End(S1)⊕End(S2).
Therefore, we proved the following theorem.

Theorem
The algebra Clq(sl2) is isomorphic to the classical Clifford
algebra Cl(sl2).
Cl(sl2) is generated by e, h, and f

e2 = 0, f2 = 0, h2 = 2;

ef = −fe+ 2, eh = −he, fh = −hf.

ϕ : Clq(sl2) → Cl(sl2)

ϕ(v2) = te, ϕ(v0) =

√
2

2
t h

(
1− q2 − 1

2q2
ef

)
, ϕ(v−2) =

t

2q
f,
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Definition
The q-deformed noncommutative Weil algebra of sl2 is a super
algebra

Wq(sl2) := Uq(sl2)⊗Clq(sl2).

with the associative multiplication given by

(x⊗ v) · (y ⊗ w) =
∑
i

xyi ⊗ viw,

where
σR(v ⊗ y) =

∑
i

yi ⊗ vi

and x, y ∈ Uq(sl2), v, w ∈ Clq(sl2).
Clearly, Wq(sl2) is an associative algebra in the braided
monoidal category of Uq(sl2)-modules with the braiding given
by the universal R-matrix.
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Set

X := v2 = E, Z := v0 = q−2EF − FE, Y := v−2 = KF,

C := EF +
q−1K + qK−1

(q − q−1)2
, (quantum Casimir)

W := K−1.

Note that the elements X, Z, Y , C, and W generate Uq(sl2).
Consider the following element of Uq(sl2)⊗Clq(sl2)

D :=
1

c

(
X ⊗ v−2 +

q

1 + q2
Z ⊗ v0 + q−2Y ⊗ v2

)
− (q2 − 1)2

2q(q2 + 1)c2
C ⊗ (v2v0v−2 + cv0)︸ ︷︷ ︸

γ

.

Theorem

D2 =
(q2 + 1)(q2 − 1)2

4q3c
C2 ⊗ 1− q(q2 + 1)

(q2 − 1)2c
1⊗ 1.

So D2 is a central element in Wq(sl2).
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Let

Cq = 2FE +
2q3K + 2qK−1 − 1− q2

(q2 − 1)2
= 2C − 2

q2 + 1

(q2 − 1)2
.

Note that
lim
q→1

Cq = Cassl2 = ef + fe+ 1
2h

2.

Then

D =
1

c

(
X ⊗ v−2 +

q

1 + q2
Z ⊗ v0 + q−2Y ⊗ v2

)
−
(

(q2 − 1)2

4q(q2 + 1)c2
Cq +

1

2qc2

)
⊗ (v2v0v−2 + cv0) .

D2 =
(1 + q2)(q2 − 1)2)

16q3c
C2
q ⊗ 1 +

(q2 + 1)2

4q3c
Cq ⊗ 1 +

q2 + 1

4qc
1⊗ 1.

If | limq→1
1
c | < ∞, then

lim
q→1

D2 =

(
lim
q→1

1

c

)(
Cassl2 +

1

2

)
.

Note that tr(Cassl2) = 12 and Dsl2 = Cassl2 +
1
2 .
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Let λ ∈ C. Recall that the type I Verma Uq(sl2)-module Mλπ

with the highest weight λπ is defined to be
an infinite-dimensional vector space

Mλπ :=
⊕

m∈Z≥0

Cvλ−2m

equipped with the action

Evλ−2m = [λ−m+ 1]qvλ−2(m−1), Fvλ−2m = [m+ 1]qvλ−2(m+1),

K±1vλ−2m = q±(λ−2m)vλ−2m,

where

[m]q =
qm − q−m

q − q−1
.

If λ ∈ Z+, then Mλπ has the simple (λ+ 1)-dimensional
sub-quotient Vλπ which is spanned by wλ−2k for k = 0, . . . , λ.
The formulas for the Uq(sl2)-action on Vλπ stay the same
assuming that w−λ−2 = 0.
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Let
fA : A⊗ V → V and fB : B ⊗W → W

be structure maps of an A-action, resp. B-action, on V , resp.
W , then the structure map fA⊗B of A⊗B-action on V ⊗W is
given by

fA⊗B = (fA⊗ fB) ◦ (idA⊗σR ⊗ idW ) : A⊗B⊗V ⊗W → V ⊗W.

In what follows we use this formula to define an action of
Wq(sl2) on Mλπ ⊗ Si and Vλπ ⊗ Si for i = 1, 2.
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Let S be one of two spin modules of Clq(sl2). Note that

C =
q

(q2 − 1)2
(q2K +K−1) + FE.

Therefore, the Casimir C acts on Mλπ as
q

(q2 − 1)2
(q2+λ + q−λ) id .

Thus, D2 acts on Mλπ ⊗ S as

q2 + 1

4qc
(q2+λ − q−λ) id .

Which is nonzero if λ ̸= −1.
Let M be an Uq(sl2)-module, then D ∈ Wq(sl2) acts on M ⊗ S.
We define the Dirac cohomology of M to be the vector space

HD(M) = ker(D)/(im(D) ∩ ker(D)).

Lemma
Let λ ∈ C \ {−1} and k ∈ Z+, then HD(Mλπ) = HD(Vkπ) = 0.
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Let λ ̸= −1. The eigenvalues of D on Mλπ ⊗ S1 are

− 1
2c [λ+ 1]qt,

1
2c [λ+ 1]qt.

For λ /∈ Z≥0, eigenvectors of D corresponding to the eigenvalue
− 1

2c [λ+ 1]qt are

q1−k+λ(q2k − 1)

q2k − q2λ+2
wλ−2k⊗s1+wλ−2(k−1)⊗s−1 for k = 1, 2, . . .,

eigenvectors of D corresponding to the eigenvalue 1
2c [λ+ 1]qt

are

wλ⊗s1, q1−k+λwλ−2k⊗s1+wλ−2(k−1)⊗s−1 for k = 1, 2, . . ..
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Let λ ∈ Z≥0. The eigenvalues of D on Vλπ ⊗ S1 are the same
as for Mλπ ⊗ S1. The eigenvector of D on Vλπ ⊗ S1

corresponding to the eigenvalue − 1
2c [λ+ 1]qt are

w−λ−2 ⊗ s1,

q1−k+λ(q2k − 1)

q2k − q2λ+2
wλ−2k ⊗ s1 + wλ−2(k−1) ⊗ s−1 for k = 1, . . . , λ.

The eigenvector of D on Vλπ ⊗ S1 corresponding to the
eigenvalue 1

2c [λ+ 1]qt are

wλ ⊗ s1, q1−k+λwλ−2k ⊗ s1 + wλ−2(k−1) ⊗ s−1 for k = 1, . . . , λ.
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g-differential spaces and algebras

Let G be a compact Lie group and g be its Lie algebra.
Let Λ[ξ] be the Grassmann algebra with generator ξ.
d := ∂ξ ∈ DerΛ[ξ]
Set

ĝ := ĝ−1 ⊕ ĝ0 ⊕ ĝ−1 = g⊗ Λ[ξ] A Cd.

For x ∈ g, let Lx = x⊗ 1 ∈ ĝ0, ιx = x⊗ ξ ∈ ĝ−1.
The non-zero brackets are

[Lx, Ly] = L[x,y], [Lx, ιy] = ι[x,y], [ιx,d] = Lx for x, y ∈ g.

A g-differential spaces is a superspace B, together with a
ĝ-modules structure ρ : ĝ → End(B).
A g-differential algebra is a superalgebra B, equipped with a
structure of G-differential space such that ρ(x) ∈ DerB for all
x ∈ ĝ.
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Take B = Λg∗, equipped with the coadjoint action of g.
• ei be a basis in g and fi be the dual basis in g∗ ≃ Λ1g∗

[ei, ej ] =
∑
k

cki,jek

• The contractions ιei are defined by

ιeifj = ⟨fj , ei⟩, ιei(x ∧ y) = (ιeix) ∧ y + (−1)deg xx ∧ ιeiy.

• The Lie derivatives are given by

Lei = −
∑
k,j

cki,j fj ∧ ιek .

• The differential d is given by Koszul’s formula

d∧ =
1

2

∑
a

fa ∧ Lea .

Then Λg∗ is a g-differential algebra.
One can show that H(Λg∗, d) ∼= (Λg∗)G ∼= H(g).
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Suppose
• g has an nondegenerate invariant symmetric bilinear form.
• ea be an orthonormal basis of g,

[ea, eb] =
∑
k

ckabek.

• Using the invariant bilinear form on g to pull down indices

f c
ab 7−→ fabc

Set

ga = − 1

2

∑
r,s

farseres ∈ Cl(2)(g),

γ =
1

3

∑
a

eaga = −1

6

∑
a,b,c

fabceaebec ∈ Cl(3)(g)g.

The Clifford algebra Cl(g) with derivations

ιa = [ea, · ]Cl, La = [ga, · ]Cl, dCl = [γ, · ]Cl.

The cohomology is trivial in all filtration degrees (except if g is
abelian, in which case dCl = 0).
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Set

[x, y]σ :=
(
mClq − (−1)p(x)p(y)mClq ◦ σ

)
(x⊗y) for x, y ∈ Clq(sl2),

where mClq denotes the multiplication map in Clq(sl2).

dCl(x) = γx− (−1)p(x)xγ = [γ, x]σ.

For all x ∈ Cl(g) set

Lvk(x) = advk x for k = 2, 0,−2.

Lemma
We have that Lvk(x) = [−dCl(vk), x]σ.
For x ∈ Clq(sl2) define

ιv2(x) := [−v2, x]σ, ιv0(x) := [−v0, x]σ, ιv0(x) := [−v−2, x]σ.

Lemma
We have that Lv = [ιv,dClq ]σ for v ∈ V2π.
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A q-deformed sl2-differential algebras is an algebra B together
with
1) an action of Uq(sl2), in particular, we can define a Lie
derivative Lx with respect an element x ∈ V2π ⊂ Uq(sl2),
2) an action ιx of ΛqV2π,
3) an differential d,
such that Lx = [ιx,d] for all x ∈ V2π.

Theorem
The algebra Clq(sl2) admits a structure of q-deformed
sl2-differential algebra.
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Let Λ(n) denotes the Grassmann algebra with n generators
ξ1, . . . , ξn. The Grassmann algebra Λ(n) has a natural
Z-grading given by deg ξi = 1. Let vect(0|n) := DerΛ(n).
Clearly, vect(0|n) is a Z-graded Lie superalgebra where
deg ∂ξi = −1. Let vect(0|n)−1 denotes the homogeneous
component of degree −1.
Any semisimple Lie superalgebra is the direct sum of the
following summands

s̃⊗ Λ(n) A v,

where s is a simple Lie superalgebra and v ⊂ vect(0|n) such
that s ⊆ s̃ ⊆ Der s and the projection v → vect(0|n)−1 is onto.

In our case (for ĝ) we have that n = 1, v = SpanC(∂ξ), s̃ = s = g.

sl2 ⊗ Λ(1) “q-deforms” to Uq(sl2)⊗ ΛqV2π.
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Thank you
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