Cubic Dirac operator for $U_q(\mathfrak{sl}_2)$

Andrey Krutov

Institute of Mathematics, Czech Academy of Sciences

Joint with Pavle Pandžić

arXiv:2209.09591 [math.RT]

Representation Theory XVII October 4, 2022 Dubrovnik The noncommutative Weil algebra of g

 $\mathcal{W}(\mathfrak{g}) := U(\mathfrak{g}) \otimes \operatorname{Cl}(\mathfrak{g}).$

Let e_a denotes the basis of \mathfrak{g} and f_a be the corresponding dual basis. The elements $u_a = e_a \otimes 1$ and $x_a = 1 \otimes f_a$ are generators of $\mathcal{W}(\mathfrak{g})$. Set

$$D := \sum_{a} u_a x_a + \gamma, \qquad \gamma \in \operatorname{Cl}^{(3)}(\mathfrak{g})$$

The element D may be viewed as a cubic Dirac operator The square D^2 is given by

$$D^2 = \operatorname{Cas}_{\mathfrak{g}} + \frac{1}{24}\operatorname{tr}(\operatorname{Cas}_{\mathfrak{g}}),$$

where $Cas_{\mathfrak{g}} = \sum_{a} e_{a}f_{a}$ is the Casimir element of $U(\mathfrak{g})$ and $tr(Cas_{\mathfrak{g}})$ is its trace in the adjoint representation of \mathfrak{g} .

- Dirac cohomology and Vogan's conjecture (proved by Huang and Pandžić)
- Cartan's model and equivariant cohomologies (Alekseev and Meinrenken)
- Multiples of representation and an algebraic version of Borel–Weil theorem (Kostant).
- Previous works of Kulish, Durđević, D'Andrea, Dabrowski, Krahmer, Tucker-Simmons, Matassa, Ó Buachalla, Somberg, Das, ... (geometric setting).
- Gauge theory on noncommutative principal bundles (Ćaćić, Mesland)
- Previous works of Pandžić and Somberg (algebraic setting).

Hopf Algebras

An associative algebra over \mathbb{K} is a 3-tuple (A, m, η)

A coassociative coalgebra over \mathbb{K} is a 3-tuple (A, Δ, ε)

$$\begin{array}{c} \Delta \colon A \to A \otimes A, \qquad \varepsilon \colon A \to \mathbb{C}. \\ A \otimes A \otimes A \stackrel{\Delta \otimes \mathrm{id}}{\longleftarrow} A \otimes A \qquad \mathbb{K} \otimes A \stackrel{\varepsilon \otimes \mathrm{id}}{\longleftarrow} A \otimes A \stackrel{\mathrm{id} \otimes \varepsilon}{\longleftarrow} A \otimes \mathbb{K} \\ & \uparrow_{\mathrm{id} \otimes \Delta} \qquad \uparrow_{\Delta} \qquad & \uparrow_{\Delta} \qquad & \uparrow_{\Delta} \qquad & \downarrow_{\Delta} \qquad & \downarrow_{\Delta}$$

A Hopf algebra over \mathbb{K} is a 6-tuple $(A, m, \eta, \Delta, \varepsilon, S)$, $S \colon A \to A$ $m \circ (S \otimes \mathrm{id}) \circ \Delta = \eta \circ \varepsilon = m \circ (\mathrm{id} \otimes S) \circ \Delta$

Example

Let G be a finite group, $A = \mathbb{K}G$. For $g \in G$, we have

$$\Delta g = g \otimes g, \qquad \varepsilon(g) = 1, \qquad S(g) = g^{-1}.$$

The tensor algebra T(V) of V. For $v \in V$,

$$\Delta v = v \otimes 1 + 1 \otimes v, \qquad \varepsilon(v) = 0, \qquad S(v) = -v.$$

The universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g} . For $x \in \mathfrak{g}$,

$$\Delta x = x \otimes 1 + 1 \otimes x, \qquad \varepsilon(x) = 0, \qquad S(x) = -x.$$

If V and W are g-modules then $\Delta x \in \mathfrak{g} \otimes \mathfrak{g}$ defines the action of x on $V \otimes W$.

The counit $\varepsilon \colon U(\mathfrak{g}) \to \mathbb{C}$ define the trivial representation.

Sweedler notation

$$\Delta \colon H \to H \otimes H, \quad \Delta h = \sum_{i} x_i \otimes y_i = h_{(1)} \otimes h_{(2)}$$

Fix $q \in \mathbb{C}$ such that q is not a root of unity. The *quantised universal enveloping algebra of* \mathfrak{sl}_2 is the algebra with four generators E, F, K, K^{-1} satisfying the defining relations

$$KK^{-1} = K^{-1}K = 1,$$
 $KEK^{-1} = q^2E,$ $KFK^{-1} = q^{-2}F,$
 $[E, F] = EF - FE = \frac{K - K^{-1}}{q - q^{-1}}.$

The Hopf algebra structure is given by

$$\begin{split} \Delta(E) &= E \otimes K + 1 \otimes E, \ \Delta(F) = F \otimes 1 + K^{-1} \otimes F, \ \Delta(K) = K \otimes K, \\ S(K^{\pm 1}) &= K^{\mp 1}, \quad S(E) = -EK^{-1}, \quad S(F) = -KF, \\ \varepsilon(K^{\pm 1}) &= 1, \quad \varepsilon(E) = \varepsilon(F) = 0. \end{split}$$

Drinfeld–Jimbo Quantum Groups: \mathfrak{sl}_2 case, $q \rightarrow 1$

- $U(\mathfrak{sl}_2)$ is generated by E, F, H.
- Formally set $q = e^{\hbar}$, $K = e^{\hbar}$ in $U_q(\mathfrak{sl}_2)$ and $\hbar \to 0$.
- Let $\widetilde{U}_q(\mathfrak{sl}_2)$ be an algebra generated by E, F, K, K^{-1} and G satisfying

$$[G, E] = E(qK + q^{-1}K^{-1}), \quad [G, F] = -(qK + q^{-1}K^{-1})F,$$
$$[E, F] = G, \quad (q - q^{-1})G = K - K^{-1}.$$

• If $q^2 \neq 1$ then $\widetilde{U}_q(\mathfrak{sl}_2)$ and $U_q(\mathfrak{sl}_2)$ are isomorphic

$$E \mapsto E$$
, $F \mapsto F$, $G \mapsto (q - q^{-1})^{-1}(K - K^{-1})$

 $U(\mathfrak{sl}_2)$ and $\widetilde{U}_1(\mathfrak{sl}_2)$ are closely related. Indeed

$$\widetilde{U}_1(\mathfrak{sl}_2) \simeq U(\mathfrak{sl}_2) \otimes \mathbb{C}\mathbb{Z}_2, \quad U(\mathfrak{sl}_2) \simeq \widetilde{U}_1(\mathfrak{sl}_2)/\langle K-1 \rangle$$

For q = 1 we have that K belongs to the centre of $\widetilde{U}_1(\mathfrak{sl}_2)$ and the first isomorphism is given by

$$E \mapsto E\mathcal{X}, \quad F \mapsto F, \quad G \mapsto H\mathcal{X},$$

where \mathcal{X} is the generator of \mathbb{CZ}_2 such that $\mathcal{X}^2 = 1$. **Remark.** Twice more representations due to \mathbb{CZ}_2 . Let α be a simple root of \mathfrak{sl}_2 and λ be an integral weight of \mathfrak{sl}_2 . • the Verma module M_λ over $U_q(\mathfrak{sl}_2)$ generated by v_λ with relations

$$Ev_{\lambda} = 0$$
 $Kv_{\lambda} = q^{(\lambda, \alpha^{\vee})}v_{\lambda}$

where α^{\vee} is the corresponding simple coroot.

• If \mathfrak{sl}_2 is a dominant weight of \mathfrak{g} then M_{λ} has a maximal proper submodule I_{λ} generated by $F^{(\lambda, \alpha^{\vee})+1}v_{\lambda}$ and

$$V_{\lambda} := M_{\lambda} / I_{\lambda}$$

is a finite-dimensional irreducible representation of $U_q(\mathfrak{sl}_2)$.

• Such representations are called *type-1 representations*.

The left adjoin action of $U_q(\mathfrak{sl}_2)$ on itself is defined by

$$\begin{aligned} \operatorname{ad}_a b &= a_{(1)} bS(a_{(2)}) & \text{ for } a, b \in U_q(\mathfrak{sl}_2). \end{aligned}$$

In particular, for $b \in U_q(\mathfrak{sl}_2)$,
$$\operatorname{ad}_E b &= EbK^{-1} - bEK^{-1}, & \operatorname{ad}_F b &= Fb - K^{-1}bKF, \end{aligned}$$
$$\operatorname{ad}_K b &= KbK^{-1}, & \operatorname{ad}_{K^{-1}} b &= K^{-1}bK. \end{aligned}$$

Denote

$$v_2 = E,$$

 $v_0 = q^{-2}EF - FE = (q - q^{-1})^{-1}(K - K^{-1}) - q^{-1}(q - q^{-1})EF,$
 $v_{-2} = KF.$

Let $\pi \in \mathcal{P}$ be the fundamental weight of \mathfrak{sl}_2 . The elements v_2 , v_0 , v_{-2} spans $U_q(\mathfrak{sl}_2)$ -module $V_{2\pi}$ with respect to the left adjoint action.

$$\begin{aligned} & \mathrm{ad}_E \, v_2 = 0, & \mathrm{ad}_K \, v_2 = q^2 v_2, & \mathrm{ad}_F \, v_2 = - \, v_0, \\ & \mathrm{ad}_E \, v_0 = - \, (q + q^{-1}) v_2, & \mathrm{ad}_K \, v_0 = v_0, & \mathrm{ad}_F \, v_0 = (q + q^{-1}) v_{-2} \\ & \mathrm{ad}_E \, v_{-2} = v_0, & \mathrm{ad}_K \, v_{-2} = q^{-2} v_{-2}, & \mathrm{ad}_F \, v_{-2} = 0. \end{aligned}$$

Let C be a monoidal category with the collection of associativity constrains

 $\alpha_{A,B,C} \colon (A \otimes B) \otimes C \to A \otimes (B \otimes C) \qquad A, B, C \in \mathsf{Obj}(\mathsf{C}).$

A *braiding* on a monoidal category C is a natural isomophism σ between functors $- \otimes -$ and $- \otimes^{op} -$ such that the hexagonal diagrams commute,

A *braided* monoidal category is a pair consisting of a monoidal category and a braiding.

If C is a strict braided monoidal category with braiding σ then for all $A,B,C\in \mathrm{Obj}(\mathsf{C})$ the braiding satisfies the following Yang–Baxter equation

A *symmetric* monoidal category is a braided monoidal category such that $\sigma^2 = id$.

Example

 $\operatorname{Vect}_{\mathbb{K}}, \sigma(v \otimes w) = w \otimes v.$ Note that

 $S^{2}V = \{ v \in \mathcal{T}(V) \mid \sigma(v) = v \}, \qquad \Lambda^{2}V = \{ v \in \mathcal{T}(V) \mid \sigma(v) = -v \}.$

 $\Lambda V = \mathcal{T}(V)/\langle S^2 V \rangle, \qquad SV = \mathcal{T}(V)/\langle \Lambda^2 V \rangle.$

Example

 $\mathsf{SVect}_{\mathbb{K}}, \, \sigma(v \otimes w) = (-1)^{p(w)p(v)} w \otimes v.$

- $\bullet \operatorname{Rep}_1 U_q(\mathfrak{g})$ is a braided monoidal category
- the universal *R*-matrix $R \in U_q(\mathfrak{g}) \widehat{\otimes} U_q(\mathfrak{g})$

 $\rho_V \colon U_q(\mathfrak{g}) \to \operatorname{End}(V), \qquad \rho_W \colon U_q(\mathfrak{g}) \to \operatorname{End}(W)$

$$\sigma_{R,V\otimes W} := \tau \circ (\rho_V \otimes \rho_W)(R), \tag{1}$$

Eigenvalues: $\pm q^{(...)}$ on $V \otimes V$

• the normalised braiding

$$\tilde{\sigma}_{R,V\otimes W} := \sqrt{\sigma_{R,W\otimes V}^{-1}\sigma_{R,V\otimes W}^{-1}}\sigma_{R,V\otimes W}.$$

Eigenvalues: ± 1 on $V \otimes V$

- $\tilde{\sigma}_{R,V\otimes W}$ does not satisfies the Yang–Baxter equation.
- For any $V \in \operatorname{Rep}_1(U_q(\mathfrak{g}))$, let us denote

 $S_q^2V:=\{x\in V\otimes V\mid \tilde{\sigma}_R(x)=x\},\quad \Lambda_q^2V:=\{x\in V\otimes V\mid \tilde{\sigma}_R(x)=-x\}.$

• the *BZ* quantum exterior algebra $\Lambda_q(V)$ of V to be

$$\Lambda_q(V) := \mathcal{T}(V) / \langle S_q^2 V \rangle,$$

For $U_q(\mathfrak{sl}_2)$,

$$R_0 = q^{\hbar H \otimes H/2}, \qquad R_1 = \sum_{m=0}^{+\infty} \frac{q^{m^2 - m} (q - q^{-1})^m}{[m]_{q^2}!} E^m \otimes F^m,$$

where $K = q^{\hbar H}$,

$$[m]_{q^2} = \frac{q^{2m} - 1}{q^2 - 1}, \qquad [m]_{q^2}! = [m]_{q^2}[m - 1]_{q^2} \dots [1]_{q^2}.$$

The corresponding braiding σ_R on $\operatorname{Rep}_1U_q(\mathfrak{sl}_2)$ is given by

 $\sigma_R := \tau \circ R \colon V \otimes W \to W \otimes W, \quad R_0(v \otimes w) = q^{(\mathrm{wt}(v), \mathrm{wt}(w))} v \otimes w,$

where W and V are objects in $\operatorname{Rep}_1 U_q(\mathfrak{sl}_2)$ and $v \in V$, $w \in W$.

For $U_q(\mathfrak{sl}_2)$, the algebra $\Lambda_q V_{2\pi}$ has the classical dimension.

$$\begin{aligned} v_2 \wedge v_2 &= 0, & v_{-2} \wedge v_{-2} &= 0, \\ v_0 \wedge v_2 &= -q^{-2}v_2 \wedge v_0, & v_{-2} \wedge v_0 &= -q^{-2}v_0 \wedge v_{-2}, \\ v_0 \wedge v_0 &= \frac{(1-q^4)}{q^3}v_2 \wedge v_{-2}, & v_{-2} \wedge v_2 &= -v_2 \wedge v_{-2}. \end{aligned}$$

Let A be a Hopf algebra and V be an A-module. A bilinear form $\langle \cdot, \cdot \rangle$ on V is invariant if

$$\langle a_{(1)}v, a_{(2)}w \rangle = \varepsilon(a) \langle v, w \rangle$$
 for all $a \in A, v, w \in V$.

The $U_q(\mathfrak{sl}_2)$ -module $V_{2\pi}$ admits a nondegenerate invariant bilinear form given by

$$\langle v_2, v_{-2} \rangle = c, \quad \langle v_0, v_0 \rangle = q^{-3}(1+q^2)c, \quad \langle v_{-2}, v_2 \rangle = cq^{-2},$$

where $c \in \mathbb{C}[q, q^{-1}]$. Note that $\langle \cdot, \cdot \rangle$ is invariant with respect to σ .

Definition

Let $\operatorname{Cl}_q(V_{2\pi}, \sigma, \langle \cdot, \cdot \rangle) := T(V_{2\pi})/I$, where the corresponding two-sided ideal I is generated by

$$x \otimes y + \sigma(x \otimes y) - 2\langle x, y \rangle 1$$
 for all $x, y \in V_{2\pi}$, (2)

and σ is the normalized braiding for $V_{2\pi} \otimes V_{2\pi}$.

In what follows we refer to $\operatorname{Cl}_q(V_{2\pi}, \sigma, \langle \cdot, \cdot \rangle)$ as the *q*-deformed Clifford algebra of \mathfrak{sl}_2 and denote it by $\operatorname{Cl}_q(\mathfrak{sl}_2)$. Note that the algebra $\operatorname{Cl}_q(\mathfrak{sl}_2)$ is an associative algebra in the braided monoidal category of $U_q(\mathfrak{sl}_2)$ -module, since the ideal (2) is invariant under the action of $U_q(\mathfrak{sl}_2)$.

The generators of the ideal (2) are

$$\begin{aligned} v_2 \otimes v_2, \\ v_0 \otimes v_2 + q^{-2} v_2 \otimes v_0, \\ v_{-2} \otimes v_2 - q^{-1} v_0 \otimes v_0 + q^{-4} v_2 \otimes v_{-2}, \\ q^2 v_{-2} \otimes v_0 + v_0 \otimes v_{-2}, \\ v_{-2} \otimes v_{-2}, \\ \frac{2(q^2 + 1)}{q^3} v_{-2} \otimes v_2 + 2v_0 \otimes v_0 + \frac{2(q^2 + 1)}{q} v_2 \otimes v_{-2} - \frac{2(q^2 + 1)(q^4 + q^2 + 1)}{q^5} c_1, \end{aligned}$$

where $c \in \mathbb{C}[q, q^{-1}]$. Note that since the ideal generated by (2) is homogeneous with respect to the standard \mathbb{Z}_2 -grading in the tensor algebra $T(V_{2\pi})$, the algebra $\operatorname{Cl}_q(\mathfrak{sl}_2)$ is also \mathbb{Z}_2 -graded.

Lemma

The algebra $Cl_q(\mathfrak{sl}_2)$ is of the PBW type.

Proof.

Consider the corresponding homogeneous quadratic algebra $\Lambda_q V_{2\pi}$. Since the Hilbert–Poincare series of $\Lambda_q V_{2\pi}$ is the same in the classical case then $\Lambda_q V_{2\pi}$ is a Koszul algebra. Hence, the algebra $\operatorname{Cl}_q(\mathfrak{sl}_2)$ is of the PBW type.

$$\begin{aligned} v_2 v_2 &= 0, & v_{-2} v_{-2} &= 0, \\ v_0 v_2 &= -q^{-2} v_2 v_0, & v_{-2} v_0 &= -q^{-2} v_0 v_{-2}, \\ v_0 v_0 &= \frac{(1-q^4)}{q^3} v_2 v_{-2} + \frac{q^2+1}{q} c1, & v_{-2} v_2 &= -v_2 v_{-2} + \frac{q^2+1}{q^2} c1, \end{aligned}$$

where $c \in \mathbb{C}[q, q^{-1}]$.

The first remark is that there is a non-scalar central element

$$\gamma = v_2 v_0 v_{-2} + c v_0.$$

The square of γ is computed to be a scalar, c^2t^2 , where

$$t = c\sqrt{\frac{q^2 + 1}{q}}.$$

This now implies there are two orthogonal central projectors in our algebra, one proportional to $\gamma_1 = \gamma - ct$, and the other to $\gamma_2 = \gamma + ct$. It is now easy to check that our algebra is the direct sum of the two ideals I_1 , I_2 generated by γ_1 and γ_2 .

Let S_1 be a two-dimensional vector space. We consider the representation of $Cl_q(\mathfrak{sl}_2)$ on S_1 given by

$$v_2 ext{ acts by } \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix}, \quad v_0 ext{ acts by } \begin{pmatrix} t/q^2 & 0 \\ 0 & -t \end{pmatrix},$$

 $v_{-2} ext{ acts by } \begin{pmatrix} 0 & 0 \\ t/q & 0 \end{pmatrix}.$

It is easily computed that γ acts by the scalar -ct. Moreover, it is clear that our algebra maps onto $\text{End}(S_1)$, so since the ideal I_1 acts by 0, the ideal I_2 is isomorphic to $\text{End}(S_1)$.

Let S_2 be a two-dimensional vector space. We consider the representation of $Cl_q(\mathfrak{sl}_2)$ on S_2 given by

$$v_2 ext{ acts by } \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix}, \quad v_0 ext{ acts by } \begin{pmatrix} -t/q^2 & 0 \\ 0 & t \end{pmatrix},$$

 $v_{-2} ext{ acts by } \begin{pmatrix} 0 & 0 \\ t/q & 0 \end{pmatrix}.$

Now γ acts by the scalar ct. Therefore, S_1 and S_2 are not isomorphic as $\operatorname{Cl}_q(\mathfrak{sl}_2)$ -modules. The algebra maps onto $\operatorname{End}(S_2)$, I_2 acts by 0, and I_1 is isomorphic to $\operatorname{End}(S_2)$.

The corresponding ideals of $Cl_q(\mathfrak{sl}_2)$ are given by

$$I_{1} := \operatorname{Span} (\gamma - ct, v_{2}(\gamma - ct), v_{-2}(\gamma - ct), v_{2}v_{-2}(\gamma - ct)), I_{2} := \operatorname{Span} (\gamma + ct, v_{2}(\gamma + ct), v_{-2}(\gamma + ct), v_{2}v_{-2}(\gamma + ct)).$$

So we see that our algebra is isomorphic to $End(S_1) \oplus End(S_2)$. Therefore, we proved the following theorem.

Theorem

The algebra $\operatorname{Cl}_q(\mathfrak{sl}_2)$ is isomorphic to the classical Clifford algebra $\operatorname{Cl}(\mathfrak{sl}_2)$.

 $\operatorname{Cl}(\mathfrak{sl}_2)$ is generated by e, h, and f

$$e^2 = 0, \quad f^2 = 0, \quad h^2 = 2;$$

 $ef = -fe + 2, \quad eh = -he, \quad fh = -hf.$

$$\begin{split} \phi \colon & \operatorname{Cl}_q(\mathfrak{sl}_2) \to \operatorname{Cl}(\mathfrak{sl}_2) \\ \phi(v_2) &= te, \qquad \phi(v_0) = \frac{\sqrt{2}}{2} t h \left(1 - \frac{q^2 - 1}{2q^2} ef \right), \qquad \phi(v_{-2}) = \frac{t}{2q} f, \end{split}$$

Definition

The q -deformed noncommutative Weil algebra of \mathfrak{sl}_2 is a super algebra

 $\mathcal{W}_q(\mathfrak{sl}_2) := U_q(\mathfrak{sl}_2) \underline{\otimes} \operatorname{Cl}_q(\mathfrak{sl}_2).$

with the associative multiplication given by

$$(x \otimes v) \cdot (y \otimes w) = \sum_{i} xy_i \otimes v_i w,$$

where

$$\sigma_R(v\otimes y) = \sum_i y_i \otimes v_i$$

and $x, y \in U_q(\mathfrak{sl}_2), v, w \in \operatorname{Cl}_q(\mathfrak{sl}_2).$

Clearly, $W_q(\mathfrak{sl}_2)$ is an associative algebra in the braided monoidal category of $U_q(\mathfrak{sl}_2)$ -modules with the braiding given by the universal *R*-matrix.

Set

$$\begin{split} X &:= v_2 = E, \quad Z := v_0 = q^{-2}EF - FE, \quad Y := v_{-2} = KF, \\ C &:= EF + \frac{q^{-1}K + qK^{-1}}{(q - q^{-1})^2}, \qquad \text{(quantum Casimir)} \\ W &:= K^{-1}. \end{split}$$

Note that the elements X, Z, Y, C, and W generate $U_q(\mathfrak{sl}_2)$. Consider the following element of $U_q(\mathfrak{sl}_2) \otimes \operatorname{Cl}_q(\mathfrak{sl}_2)$

$$D := \frac{1}{c} \left(X \otimes v_{-2} + \frac{q}{1+q^2} Z \otimes v_0 + q^{-2} Y \otimes v_2 \right) - \frac{(q^2 - 1)^2}{2q(q^2 + 1)c^2} C \otimes \underbrace{(v_2 v_0 v_{-2} + c v_0)}_{\gamma}.$$

Theorem

$$D^{2} = \frac{(q^{2}+1)(q^{2}-1)^{2}}{4q^{3}c}C^{2} \otimes 1 - \frac{q(q^{2}+1)}{(q^{2}-1)^{2}c}1 \otimes 1.$$

So D^2 is a central element in $W_q(\mathfrak{sl}_2)$.

Let

$$C_q = 2FE + \frac{2q^3K + 2qK^{-1} - 1 - q^2}{(q^2 - 1)^2} = 2C - 2\frac{q^2 + 1}{(q^2 - 1)^2}.$$

Note that

$$\lim_{q \to 1} C_q = \operatorname{Cas}_{\mathfrak{sl}_2} = ef + fe + \frac{1}{2}h^2.$$

Then

$$D = \frac{1}{c} \left(X \otimes v_{-2} + \frac{q}{1+q^2} Z \otimes v_0 + q^{-2} Y \otimes v_2 \right)$$
$$- \left(\frac{(q^2 - 1)^2}{4q(q^2 + 1)c^2} C_q + \frac{1}{2qc^2} \right) \otimes (v_2 v_0 v_{-2} + cv_0) .$$
$$D^2 = \frac{(1+q^2)(q^2 - 1)^2}{16q^3c} C_q^2 \otimes 1 + \frac{(q^2 + 1)^2}{4q^3c} C_q \otimes 1 + \frac{q^2 + 1}{4qc} 1 \otimes 1.$$

If $|\lim_{q\to 1} \frac{1}{c}| < \infty$, then

$$\lim_{q \to 1} D^2 = \left(\lim_{q \to 1} \frac{1}{c}\right) \left(\operatorname{Cas}_{\mathfrak{sl}_2} + \frac{1}{2}\right)$$

.

Note that $tr(Cas_{\mathfrak{sl}_2}) = 12$ and $D_{\mathfrak{sl}_2} = Cas_{\mathfrak{sl}_2} + \frac{1}{2}$.

Let $\lambda \in \mathbb{C}$. Recall that the type I Verma $U_q(\mathfrak{sl}_2)$ -module $M_{\lambda\pi}$ with the highest weight $\lambda\pi$ is defined to be an infinite-dimensional vector space

$$M_{\lambda\pi} := \bigoplus_{m \in \mathbb{Z}_{\ge 0}} \mathbb{C} v_{\lambda - 2m}$$

equipped with the action

$$Ev_{\lambda-2m} = [\lambda - m + 1]_q v_{\lambda-2(m-1)}, \qquad Fv_{\lambda-2m} = [m+1]_q v_{\lambda-2(m+1)},$$
$$K^{\pm 1} v_{\lambda-2m} = q^{\pm(\lambda-2m)} v_{\lambda-2m},$$

where

$$[m]_q = \frac{q^m - q^{-m}}{q - q^{-1}}.$$

If $\lambda \in \mathbb{Z}_+$, then $M_{\lambda\pi}$ has the simple $(\lambda + 1)$ -dimensional sub-quotient $V_{\lambda\pi}$ which is spanned by $w_{\lambda-2k}$ for $k = 0, \ldots, \lambda$. The formulas for the $U_q(\mathfrak{sl}_2)$ -action on $V_{\lambda\pi}$ stay the same assuming that $w_{-\lambda-2} = 0$. Let

$$f_A \colon A \otimes V \to V$$
 and $f_B \colon B \otimes W \to W$

be structure maps of an *A*-action, resp. *B*-action, on *V*, resp. *W*, then the structure map $f_{A \otimes B}$ of $A \otimes B$ -action on $V \otimes W$ is given by

 $f_{A\otimes B} = (f_A \otimes f_B) \circ (\mathrm{id}_A \otimes \sigma_R \otimes \mathrm{id}_W) \colon A \otimes B \otimes V \otimes W \to V \otimes W.$

In what follows we use this formula to define an action of $W_q(\mathfrak{sl}_2)$ on $M_{\lambda\pi} \otimes S_i$ and $V_{\lambda\pi} \otimes S_i$ for i = 1, 2.

Let S be one of two spin modules of $Cl_q(\mathfrak{sl}_2)$. Note that

$$C = \frac{q}{(q^2 - 1)^2}(q^2K + K^{-1}) + FE.$$

Therefore, the Casimir *C* acts on $M_{\lambda\pi}$ as

$$\frac{q}{(q^2-1)^2}(q^{2+\lambda}+q^{-\lambda})$$
 id.

Thus, D^2 acts on $M_{\lambda\pi} \otimes S$ as

$$\frac{q^2+1}{4qc}(q^{2+\lambda}-q^{-\lambda})\,\mathrm{id}\,.$$

Which is nonzero if $\lambda \neq -1$.

Let *M* be an $U_q(\mathfrak{sl}_2)$ -module, then $D \in W_q(\mathfrak{sl}_2)$ acts on $M \otimes S$. We define *the Dirac cohomology of M* to be the vector space

$$H_D(M) = \ker(D) / (\operatorname{im}(D) \cap \ker(D)).$$

Lemma

Let $\lambda \in \mathbb{C} \setminus \{-1\}$ and $k \in \mathbb{Z}_+$, then $H_D(M_{\lambda \pi}) = H_D(V_{k\pi}) = 0$.

Let $\lambda \neq -1$. The eigenvalues of D on $M_{\lambda\pi} \otimes S_1$ are

$$-\frac{1}{2c}[\lambda+1]_q t, \qquad \frac{1}{2c}[\lambda+1]_q t.$$

For $\lambda \notin \mathbb{Z}_{\geq 0}$, eigenvectors of D corresponding to the eigenvalue $-\frac{1}{2c}[\lambda+1]_q t$ are

$$\frac{q^{1-k+\lambda}(q^{2k}-1)}{q^{2k}-q^{2\lambda+2}}w_{\lambda-2k} \otimes s_1 + w_{\lambda-2(k-1)} \otimes s_{-1} \qquad \text{for } k = 1, 2, \dots,$$

eigenvectors of D corresponding to the eigenvalue $\frac{1}{2c}[\lambda+1]_qt$ are

$$w_{\lambda} \otimes s_1, \qquad q^{1-k+\lambda} w_{\lambda-2k} \otimes s_1 + w_{\lambda-2(k-1)} \otimes s_{-1} \qquad \text{for } k = 1, 2, \dots$$

Let $\lambda \in \mathbb{Z}_{\geq 0}$. The eigenvalues of D on $V_{\lambda \pi} \otimes S_1$ are the same as for $M_{\lambda \pi} \otimes S_1$. The eigenvector of D on $V_{\lambda \pi} \otimes S_1$ corresponding to the eigenvalue $-\frac{1}{2c}[\lambda + 1]_q t$ are

$$w_{-\lambda-2}\otimes s_1,$$

$$\frac{q^{1-k+\lambda}(q^{2k}-1)}{q^{2k}-q^{2\lambda+2}}w_{\lambda-2k}\otimes s_1+w_{\lambda-2(k-1)}\otimes s_{-1}\quad\text{for }k=1,\ldots,\lambda.$$

The eigenvector of D on $V_{\lambda\pi} \otimes S_1$ corresponding to the eigenvalue $\frac{1}{2c}[\lambda+1]_q t$ are

 $w_{\lambda} \otimes s_1$, $q^{1-k+\lambda} w_{\lambda-2k} \otimes s_1 + w_{\lambda-2(k-1)} \otimes s_{-1}$ for $k = 1, \dots, \lambda$.

g-differential spaces and algebras

Let *G* be a compact Lie group and \mathfrak{g} be its Lie algebra. Let $\Lambda[\xi]$ be the Grassmann algebra with generator ξ . $d := \partial_{\xi} \in \text{Der } \Lambda[\xi]$ Set

$$\widehat{\mathfrak{g}} := \widehat{\mathfrak{g}}_{-1} \oplus \widehat{\mathfrak{g}}_0 \oplus \widehat{\mathfrak{g}}_{-1} = \mathfrak{g} \otimes \Lambda[\xi] \in \mathbb{C}d.$$

For $x \in \mathfrak{g}$, let $L_x = x \otimes 1 \in \widehat{\mathfrak{g}}_0$, $\iota_x = x \otimes \xi \in \widehat{\mathfrak{g}}_{-1}$. The non-zero brackets are

 $[L_x, L_y] = L_{[x,y]}, \quad [L_x, \iota_y] = \iota_{[x,y]}, \quad [\iota_x, d] = L_x \qquad \text{for } x, y \in \mathfrak{g}.$

A g-differential spaces is a superspace B, together with a $\widehat{\mathfrak{g}}$ -modules structure $\rho \colon \widehat{\mathfrak{g}} \to \operatorname{End}(B)$. A g-differential algebra is a superalgebra B, equipped with a structure of G-differential space such that $\rho(x) \in \operatorname{Der} B$ for all $x \in \widehat{\mathfrak{g}}$. Take $B = \Lambda \mathfrak{g}^*$, equipped with the coadjoint action of \mathfrak{g} .

• e_i be a basis in \mathfrak{g} and f_i be the dual basis in $\mathfrak{g}^* \simeq \Lambda^1 \mathfrak{g}^*$

$$[e_i, e_j] = \sum_k c_{i,j}^k e_k$$

• The contractions ι_{e_i} are defined by

 $\iota_{e_i} f_j = \langle f_j, e_i \rangle, \qquad \iota_{e_i} (x \wedge y) = (\iota_{e_i} x) \wedge y + (-1)^{\deg x} x \wedge \iota_{e_i} y.$

• The Lie derivatives are given by

$$L_{e_i} = -\sum_{k,j} c_{i,j}^k f_j \wedge \iota_{e_k}.$$

 \bullet The differential ${\rm d}$ is given by Koszul's formula

$$\mathbf{d}_{\wedge} = \frac{1}{2} \sum_{a} f_a \wedge L_{e_a}.$$

Then $\Lambda \mathfrak{g}^*$ is a \mathfrak{g} -differential algebra. One can show that $H(\Lambda \mathfrak{g}^*, d) \cong (\Lambda \mathfrak{g}^*)^G \cong H(\mathfrak{g})$. Suppose

- g has an nondegenerate invariant symmetric bilinear form.
- e_a be an orthonormal basis of \mathfrak{g} ,

$$[e_a, e_b] = \sum_k c_{ab}^k e_k.$$

 \bullet Using the invariant bilinear form on $\mathfrak g$ to pull down indices

$$f^c_{ab} \longmapsto f_{abc}$$

Set

$$g_a = -\frac{1}{2} \sum_{r,s} f_{ars} e_r e_s \in \operatorname{Cl}^{(2)}(\mathfrak{g}),$$

$$\gamma = \frac{1}{3} \sum_a e_a g_a = -\frac{1}{6} \sum_{a,b,c} f_{abc} e_a e_b e_c \in \operatorname{Cl}^{(3)}(\mathfrak{g})^{\mathfrak{g}}.$$

The Clifford algebra $\mathrm{Cl}(\mathfrak{g})$ with derivations

$$\iota_a = [e_a, \cdot]_{\mathrm{Cl}}, \quad L_a = [g_a, \cdot]_{\mathrm{Cl}}, \quad \mathrm{d}_{\mathrm{Cl}} = [\gamma, \cdot]_{\mathrm{Cl}}.$$

The cohomology is trivial in all filtration degrees (except if \mathfrak{g} is abelian, in which case $d_{Cl} = 0$).

Set

$$[x,y]_{\sigma} := \left(m_{\operatorname{Cl}_q} - (-1)^{p(x)p(y)} m_{\operatorname{Cl}_q} \circ \sigma \right) (x \otimes y) \quad \text{for } x, y \in \operatorname{Cl}_q(\mathfrak{sl}_2),$$

where m_{Cl_q} denotes the multiplication map in $\text{Cl}_q(\mathfrak{sl}_2)$.

$$d_{\rm Cl}(x) = \gamma x - (-1)^{p(x)} x \gamma = [\gamma, x]_{\sigma}.$$

For all $x \in \operatorname{Cl}(\mathfrak{g})$ set

$$L_{v_k}(x) = \operatorname{ad}_{v_k} x$$
 for $k = 2, 0, -2$.

Lemma

We have that $L_{v_k}(x) = [-d_{Cl}(v_k), x]_{\sigma}$. For $x \in Cl_q(\mathfrak{sl}_2)$ define

$$\iota_{v_2}(x) := [-v_2, x]_{\sigma}, \quad \iota_{v_0}(x) := [-v_0, x]_{\sigma}, \quad \iota_{v_0}(x) := [-v_{-2}, x]_{\sigma}.$$

Lemma

We have that $L_v = [\iota_v, d_{Cl_q}]_\sigma$ for $v \in V_{2\pi}$.

A $q\text{-deformed }\mathfrak{sl}_2\text{-differential algebras is an algebra }B$ together with

1) an action of $U_q(\mathfrak{sl}_2)$, in particular, we can define a Lie derivative L_x with respect an element $x \in V_{2\pi} \subset U_q(\mathfrak{sl}_2)$,

- 2) an action ι_x of $\Lambda_q V_{2\pi}$,
- 3) an differential d,

such that $L_x = [\iota_x, d]$ for all $x \in V_{2\pi}$.

Theorem

The algebra $Cl_q(\mathfrak{sl}_2)$ admits a structure of *q*-deformed \mathfrak{sl}_2 -differential algebra.

Let $\Lambda(n)$ denotes the Grassmann algebra with n generators ξ_1, \ldots, ξ_n . The Grassmann algebra $\Lambda(n)$ has a natural \mathbb{Z} -grading given by $\deg \xi_i = 1$. Let $\mathfrak{vect}(0|n) := \operatorname{Der} \Lambda(n)$. Clearly, $\mathfrak{vect}(0|n)$ is a \mathbb{Z} -graded Lie superalgebra where $\deg \partial_{\xi_i} = -1$. Let $\mathfrak{vect}(0|n)_{-1}$ denotes the homogeneous component of degree -1.

Any semisimple Lie superalgebra is the direct sum of the following summands

 $\tilde{\mathfrak{s}} \otimes \Lambda(n) \in \mathfrak{v},$

where \mathfrak{s} is a simple Lie superalgebra and $\mathfrak{v} \subset \mathfrak{vect}(0|n)$ such that $\mathfrak{s} \subseteq \tilde{\mathfrak{s}} \subseteq \operatorname{Der} \mathfrak{s}$ and the projection $\mathfrak{v} \to \mathfrak{vect}(0|n)_{-1}$ is onto.

In our case (for $\hat{\mathfrak{g}}$) we have that n = 1, $\mathfrak{v} = \operatorname{Span}_{\mathbb{C}}(\partial_{\xi})$, $\tilde{\mathfrak{s}} = \mathfrak{s} = \mathfrak{g}$.

$$\mathfrak{sl}_2\otimes\Lambda(1)$$
 "q-deforms" to $U_q(\mathfrak{sl}_2)\otimes\Lambda_q V_{2\pi}$.

Thank you